spss、R语言、Python数据分析系列(4):python读取外部数据

简介: spss、R语言、Python数据分析系列(4):python读取外部数据

Python读取外部数据也比较简单,最常用的有pandas 和numpy模块


1、读取txt格式

import pandas as pd
 df1=pd.read_table('C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据/data02-02a.txt')
  06 0 10 1.46 38
0  15 0 10 1.48 39
1  04 0 11 1.52 42
2  03 0 11 1.55 44
3  11 1 11 1.55 55
4  18 1 11 1.56 48



2、读取csv格式

df2=pd.read_csv('C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.csv')
df2
 2008/1/7  11.97  12.14   11.7   11.9  11.9.1
0    2008/1/8  11.90  12.75  11.80  12.21   12.21
1    2008/1/9  12.10  13.03  12.05  12.94   12.94
2   2008/1/10  13.04  13.32  12.71  13.10   13.10
3   2008/1/11  13.15  14.15  13.15  13.93   13.93
4   2008/1/14  13.96  14.45  13.60  14.03   14.03
5   2008/1/15  14.00  14.18  13.70  13.97   13.97
6   2008/1/16  13.80  13.85  13.11  13.32   13.32
7   2008/1/18  13.27  13.73  12.20  12.80   12.80
8   2008/1/21  12.75  13.34  12.35  13.22   13.22
9   2008/1/22  13.08  13.20  11.90  11.90   11.90
10  2008/1/23  11.00  11.40  10.71  10.71   10.71
11  2008/1/24  11.30  11.47  11.00  11.17   11.17
12   2008/1/7  11.97  12.14  11.70  11.90   11.90
13   2008/1/8  11.90  12.75  11.80  12.21   12.21
14   2008/1/9  12.10  13.03  12.05  12.94   12.94
15  2008/1/10  13.04  13.32  12.71  13.10   13.10
16  2008/1/11  13.15  14.15  13.15  13.93   13.93
17  2008/1/14  13.96  14.45  13.60  14.03   14.03
18  2008/1/15  14.00  14.18  13.70  13.97   13.97
19  2008/1/16  13.80  13.85  13.11  13.32   13.32
20  2008/1/18  13.27  13.73  12.20  12.80   12.80
21  2008/1/21  12.75  13.34  12.35  13.22   13.22
22  2008/1/22  13.08  13.20  11.90  11.90   11.90
23  2008/1/23  11.00  11.40  10.71  10.71   10.71
24  2008/1/24  11.30  11.47  11.00  11.17   11.17
25   2008/1/7  11.97  12.14  11.70  11.90   11.90
26   2008/1/8  11.90  12.75  11.80  12.21   12.21
27   2008/1/9  12.10  13.03  12.05  12.94   12.94
28  2008/1/10  13.04  13.32  12.71  13.10   13.10
29  2008/1/11  13.15  14.15  13.15  13.93   13.93
..        ...    ...    ...    ...    ...     ...
47  2008/1/21  12.75  13.34  12.35  13.22   13.22
48  2008/1/22  13.08  13.20  11.90  11.90   11.90
49  2008/1/23  11.00  11.40  10.71  10.71   10.71
50  2008/1/24  11.30  11.47  11.00  11.17   11.17
51   2008/1/7  11.97  12.14  11.70  11.90   11.90
52   2008/1/8  11.90  12.75  11.80  12.21   12.21
53   2008/1/9  12.10  13.03  12.05  12.94   12.94
54  2008/1/10  13.04  13.32  12.71  13.10   13.10
55  2008/1/11  13.15  14.15  13.15  13.93   13.93
56  2008/1/14  13.96  14.45  13.60  14.03   14.03
57  2008/1/15  14.00  14.18  13.70  13.97   13.97
58  2008/1/16  13.80  13.85  13.11  13.32   13.32
59  2008/1/18  13.27  13.73  12.20  12.80   12.80
60  2008/1/21  12.75  13.34  12.35  13.22   13.22
61  2008/1/22  13.08  13.20  11.90  11.90   11.90
62  2008/1/23  11.00  11.40  10.71  10.71   10.71
63  2008/1/24  11.30  11.47  11.00  11.17   11.17
64   2008/1/7  11.97  12.14  11.70  11.90   11.90
65   2008/1/8  11.90  12.75  11.80  12.21   12.21
66   2008/1/9  12.10  13.03  12.05  12.94   12.94
67  2008/1/10  13.04  13.32  12.71  13.10   13.10
68  2008/1/11  13.15  14.15  13.15  13.93   13.93
69  2008/1/14  13.96  14.45  13.60  14.03   14.03
70  2008/1/15  14.00  14.18  13.70  13.97   13.97
71  2008/1/16  13.80  13.85  13.11  13.32   13.32
72  2008/1/18  13.27  13.73  12.20  12.80   12.80
73  2008/1/21  12.75  13.34  12.35  13.22   13.22
74  2008/1/22  13.08  13.20  11.90  11.90   11.90
75  2008/1/23  11.00  11.40  10.71  10.71   10.71
76  2008/1/24  11.30  11.47  11.00  11.17   11.17
[77 rows x 6 columns]


3、读取excel格式

df3=pd.read_excel('C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据.xlsx')
df3 2008-01-07 00:00:00  11.97  12.14   11.7   11.9  11.9.1
0           2008-01-08  11.90  12.75  11.80  12.21   12.21
1           2008-01-09  12.10  13.03  12.05  12.94   12.94
2           2008-01-10  13.04  13.32  12.71  13.10   13.10
3           2008-01-11  13.15  14.15  13.15  13.93   13.93
4           2008-01-14  13.96  14.45  13.60  14.03   14.03
5           2008-01-15  14.00  14.18  13.70  13.97   13.97
6           2008-01-16  13.80  13.85  13.11  13.32   13.32
7           2008-01-18  13.27  13.73  12.20  12.80   12.80
8           2008-01-21  12.75  13.34  12.35  13.22   13.22
9           2008-01-22  13.08  13.20  11.90  11.90   11.90
10          2008-01-23  11.00  11.40  10.71  10.71   10.71
11          2008-01-24  11.30  11.47  11.00  11.17   11.17
12          2008-01-07  11.97  12.14  11.70  11.90   11.90
13          2008-01-08  11.90  12.75  11.80  12.21   12.21
14          2008-01-09  12.10  13.03  12.05  12.94   12.94
15          2008-01-10  13.04  13.32  12.71  13.10   13.10
16          2008-01-11  13.15  14.15  13.15  13.93   13.93
17          2008-01-14  13.96  14.45  13.60  14.03   14.03
18          2008-01-15  14.00  14.18  13.70  13.97   13.97
19          2008-01-16  13.80  13.85  13.11  13.32   13.32
20          2008-01-18  13.27  13.73  12.20  12.80   12.80
21          2008-01-21  12.75  13.34  12.35  13.22   13.22
22          2008-01-22  13.08  13.20  11.90  11.90   11.90
23          2008-01-23  11.00  11.40  10.71  10.71   10.71
24          2008-01-24  11.30  11.47  11.00  11.17   11.17
25          2008-01-07  11.97  12.14  11.70  11.90   11.90
26          2008-01-08  11.90  12.75  11.80  12.21   12.21
27          2008-01-09  12.10  13.03  12.05  12.94   12.94
28          2008-01-10  13.04  13.32  12.71  13.10   13.10
29          2008-01-11  13.15  14.15  13.15  13.93   13.93
..                 ...    ...    ...    ...    ...     ...
47          2008-01-21  12.75  13.34  12.35  13.22   13.22
48          2008-01-22  13.08  13.20  11.90  11.90   11.90
49          2008-01-23  11.00  11.40  10.71  10.71   10.71
50          2008-01-24  11.30  11.47  11.00  11.17   11.17
51          2008-01-07  11.97  12.14  11.70  11.90   11.90
52          2008-01-08  11.90  12.75  11.80  12.21   12.21
53          2008-01-09  12.10  13.03  12.05  12.94   12.94
54          2008-01-10  13.04  13.32  12.71  13.10   13.10
55          2008-01-11  13.15  14.15  13.15  13.93   13.93
56          2008-01-14  13.96  14.45  13.60  14.03   14.03
57          2008-01-15  14.00  14.18  13.70  13.97   13.97
58          2008-01-16  13.80  13.85  13.11  13.32   13.32
59          2008-01-18  13.27  13.73  12.20  12.80   12.80
60          2008-01-21  12.75  13.34  12.35  13.22   13.22
61          2008-01-22  13.08  13.20  11.90  11.90   11.90
62          2008-01-23  11.00  11.40  10.71  10.71   10.71
63          2008-01-24  11.30  11.47  11.00  11.17   11.17
64          2008-01-07  11.97  12.14  11.70  11.90   11.90
65          2008-01-08  11.90  12.75  11.80  12.21   12.21
66          2008-01-09  12.10  13.03  12.05  12.94   12.94
67          2008-01-10  13.04  13.32  12.71  13.10   13.10
68          2008-01-11  13.15  14.15  13.15  13.93   13.93
69          2008-01-14  13.96  14.45  13.60  14.03   14.03
70          2008-01-15  14.00  14.18  13.70  13.97   13.97
71          2008-01-16  13.80  13.85  13.11  13.32   13.32
72          2008-01-18  13.27  13.73  12.20  12.80   12.80
73          2008-01-21  12.75  13.34  12.35  13.22   13.22
74          2008-01-22  13.08  13.20  11.90  11.90   11.90
75          2008-01-23  11.00  11.40  10.71  10.71   10.71
76          2008-01-24  11.30  11.47  11.00  11.17   11.17
[77 rows x 6 columns]


4、读取spss格式

import savReaderWriter
df4=savReaderWriter.SavReader('C:/Users/Administrator/Desktop/spss/数据/SPSS练习数据/data02-01.sav')
目录
相关文章
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
Unix 编译器 C语言
[oeasy]python052_[系统开发语言为什么默认是c语言
本文介绍了C语言为何成为系统开发的首选语言,从其诞生背景、发展历史及特点进行阐述。C语言源于贝尔实验室,与Unix操作系统相互促进,因其简洁、高效、跨平台等特性,逐渐成为主流。文章还提及了C语言的学习资料及其对编程文化的影响。
32 5
|
2月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
305 10
|
3月前
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
198 4
数据分析的 10 个最佳 Python 库
|
3月前
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。

推荐镜像

更多