深度学习:Self-Attention与Multi-heads Attention详解

简介: 深度学习:Self-Attention与Multi-heads Attention详解

深度学习:Self-Attention与Multi-heads Attention详解

Introduction

Transformer 最初是由 Ashish Vaswani等人提出的一种用以完成机器翻译的 Seq2Seq 学习任务的全新网络结构,它完全基于注意力机制来实现从序列到序列的建模。相比于以往 NLP 模型中使用 RNN 或者编码-解码结构,其具有计算复杂度小、并行度高、容易学习长程依赖等优势。Transformer 网络结构如图 :
在这里插入图片描述

Self - Attention

我们在刚接触的Transformer的时候,首先遇到的难题是Self-attention这个模块:

在这里插入图片描述

从左下角看起,假设一个序列数据有x1、x2, 每个x是一个高维向量。然后通过fx,把 x Embedding成低维向量a1,a2,让后对a1,a2分别通过全连接层(对应的权重矩阵w)得到对应的q(query),k(key),v(value)。

首先简单的解释一下q k v的含义
这就要看一下self attention的整体架构如下图:

在这里插入图片描述

其中A为1个序列数据,a为序列数据的4个元素,每个a都是一个向量。a为input,b为output
,其中b1为a1考虑了整个序列数据的结果,也就是说a1会与a1,a2,a3,a4 计算一个attention score(也可以叫做相关性)。

那么如何计算这个attention score呢?
假设a1要与其它的元素(包括a1本身)计算相关性,那么q就是a1,k就是被计算相关性的元素。
计算方法有很多种,我们主要列举两种:
在这里插入图片描述

分为dot product 和 与 additive ,前者就是计算出q k后,做点乘(对应元素相乘在相加),然后得到q对所有k的相关性,然后经过softmax处理得到attention score,在大部分情况下我们都采用这种方法,后者则是做加法然后经过tanh激活得到。

我们得到一组attention score就表示q 与 各个k的相似性,分数越高,相关性越大,就会dominate 对应的输出结果b。之后把attention score与value相乘,然后把所有结果相加得到结果b。

举例来说 把序列A:={a1,a2}输入self attention模块, 得到 b1,b2,其中b1表示a1考虑了 整体输入的结果,也就是说在计算资源足够的情况下,这个架构不会因为序列过长而遗忘起始元素。

我们在看一下论文中的公式
在这里插入图片描述
这里只差根号dk没有解释过了,dk表示序列的长度,它的作用是为了防止数值过大,维持数值稳定性。

Multi-Head Attention

多头注意力与单头其实很相似,假设head为2,结构如下图:
在这里插入图片描述

假设q1 为(1,1,0,1),那么把均分为head个,把它们分配给每个head,

(实际是不同的head的所对应的q权重矩阵不同在这里插入图片描述

得到 q11,q 12,其中第一个下标代表序列元素的索引,第二个下标代表head。 k v重复刚才的操作,
然后把head数相同的放在一起计算:

在这里插入图片描述

然后对结果执行concat操作。

在这里插入图片描述

最后在乘上矩阵W_o融合不同维度特征,它的作用类似于1 * 1卷积。

Position- Encoding

方法为直接在input上 add 位置编码。

分为两种方法:

  1. 公式编码

    在这里插入图片描述

    1. 可训练的位置编码
目录
相关文章
|
3月前
|
机器学习/深度学习 自然语言处理 并行计算
【深度学习】Attention的原理、分类及实现
文章详细介绍了注意力机制(Attention)的原理、不同类型的分类以及如何在Keras中实现Attention。文章涵盖了Attention的基本概念、计算区域、所用信息、结构层次等方面,并提供了实现示例。
126 0
|
6月前
|
机器学习/深度学习 自然语言处理 TensorFlow
使用Python实现深度学习模型:注意力机制(Attention)
使用Python实现深度学习模型:注意力机制(Attention)
300 0
使用Python实现深度学习模型:注意力机制(Attention)
|
机器学习/深度学习 人工智能 自然语言处理
2017年ACL的四个NLP深度学习趋势 (二):可解释性和注意力(Interpretability and Attention)
作者通过分析2017年ACL的论文,以及演讲内容,得出了四个NLP深度学习趋势:Linguistic Structure 、 Word Embeddings、Interpretability 、Attention。今天我们就逐一分析一下这四个深度学习趋势。
2043 0
|
机器学习/深度学习 存储 自然语言处理
最前沿:图文结合详解深度学习Memory & Attention
该文献主要介绍深度学习网络中语音、文字以及图片这块中的典型神经网络,重点介绍Memory与Attention的发展前沿,分析了几个详细的典型模型,说明Memory与Attention在文字、语音以及图片相关应用中的重要性。
3093 0
|
机器学习/深度学习 存储 自然语言处理
最前沿:图文结合详解深度学习Memory & Attention
该文献主要介绍深度学习网络中语音、文字以及图片这块中的典型神经网络,重点介绍Memory与Attention的发展前沿,分析了几个详细的典型模型,说明Memory与Attention在文字、语音以及图片相关应用中的重要性。
12865 0
|
5天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
38 9
|
4天前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
本文探讨了深度学习在图像识别领域的应用现状,分析了其面临的主要技术挑战和解决方案。通过对比传统方法和深度学习模型的优势,揭示了深度学习如何推动图像识别技术的发展,并展望了未来的研究方向。
|
1天前
|
机器学习/深度学习 分布式计算 自动驾驶
深度学习在图像识别中的革命性应用####
【10月更文挑战第29天】 本文深入探讨了深度学习技术如何彻底革新图像识别领域,通过卷积神经网络(CNN)的架构优化、数据集增强策略及迁移学习的应用,显著提升了图像分类与目标检测的准确率。文章概述了深度学习模型训练的关键挑战,如过拟合、计算资源依赖性,并提出了创新性解决方案,包括正则化技术、分布式计算框架及自适应学习率调整策略。强调了深度学习在自动驾驶、医疗影像分析等领域的广阔应用前景,同时指出了隐私保护、模型可解释性等伦理法律问题的重要性,为未来研究提供了方向。 ####
17 5
|
2天前
|
机器学习/深度学习 人工智能 算法
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第28天】 本文深入探讨了深度学习技术,特别是卷积神经网络(CNN)在图像识别领域的应用及其面临的主要挑战。通过分析CNN的工作原理和架构设计,揭示了其在处理大规模图像数据时的优势。同时,本文也讨论了当前深度学习模型在图像识别任务中遇到的一些关键问题,如过拟合、数据不平衡以及计算资源的需求等,并提出了相应的解决策略。此外,文章还展望了未来深度学习技术在图像识别领域的发展方向,包括模型优化、算法创新及应用场景的拓展。
12 1