【图像识别】基于卷积神经网络CNN和支持向量机SVM实现花卉图像识别附matlab代码

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 【图像识别】基于卷积神经网络CNN和支持向量机SVM实现花卉图像识别附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

针对传统图像分类算法在泛化能力等方面存在的不足,结合当前的深度学习算法,提出一种基于卷积神经网络与SVM的图像识别方法.对此,文章首先以深度学习算法中比较典型的卷积神经网络进行介绍,并重点对原理和训练过程进行介绍;然后构建卷积神经网络结构和SVM分类器,最后以水果图像为例,通过MATLAB对上述模型进行编程仿真.结果表明本文提出的算法在识别的错误率方面都要明显优于单一的算法,进而验证了本文算法的可行性,为当前图像的识别提供了新的参考与借鉴.

⛄ 部分代码

% SVM

clc;

clear all;                

%% 鍒掑垎鏁版嵁闆�pwd='.\data'; % 璺緞

currentPath = pwd;  % 鑾峰緱褰撳墠鐨勫伐浣滅洰褰�fprintf('鍔犺浇鏁版嵁...');

t = tic;


imdsImage = imageDatastore(fullfile(pwd),'IncludeSubfolders',true,'LabelSource','foldernames');   % 杞藉叆鎵�湁鍥剧墖闆嗗悎

imdsImage.ReadFcn = @readAndPreproc;

numImages = length(imdsImage.Files); %鍥剧墖鎬荤殑寮犳暟

[imdsTrain,imdsTest] = splitEachLabel(imdsImage, 0.8,'randomized');%姣忎釜绫婚兘鎸夋瘮渚嬮殢鏈烘媶鍒嗘暟鎹泦锛岃缁冮泦鍜屾祴璇曢泦8锛�锛�


fprintf('瀹屾垚 %.02f 绉抃n', toc(t));


countEachLabel(imdsTrain)


%% 鎼缓SVM妯″瀷

rng('default');


nTrain = length(imdsTrain.Labels);

nTest = length(imdsTest.Labels);

for i=1:nTrain

   I=readimage(imdsTrain,i);

   I=imresize(I,[25 25]); % 璋冩暣澶у皬 鍑忓皯杩愮畻鏃堕棿

   I_gray=rgb2gray(I);

   

   Train(:,i)=double(I_gray(:));

   

end

YTrain=double(imdsTrain.Labels);


for i=1:nTest

   I=readimage(imdsTest,i);

   I=imresize(I,[25 25]); % 璋冩暣澶у皬 鍑忓皯杩愮畻鏃堕棿

   I_gray=rgb2gray(I);

   Test(:,i)=double(I_gray(:));

   

end

YTest=double(imdsTest.Labels);

% 璁粌

t = tic;

SVMModel=fitcecoc(Train',YTrain);

fprintf('璁粌缁撴潫鑺辫垂鏃堕棿锛�%.02f 鍒嗛挓\n', toc(t)/60);

%% 娴嬭瘯 + 璇勪及鎸囨爣

YPred = predict(SVMModel,Test');


accuracy = sum(YPred == YTest)/numel(YTest)


save SVM_NET.mat SVMModel

⛄ 运行结果

⛄ 参考文献

[1]刘福珍. 基于卷积神经网络法和支持向量机法的影像科图像识别方法:, CN108389187A[P]. 2018.

[2]杨红云, 黄琼, 孙爱珍,等. 基于卷积神经网络和支持向量机的水稻种子图像分类识别[J]. 中国粮油学报, 2021(012):036.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
8天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
11天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
15 2
|
11天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
19 1
|
14天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
55 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
1天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
8 0
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
10天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
13天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。
|
8天前
|
机器学习/深度学习 人工智能 监控
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。随着卷积神经网络(CNN)的发展,图像识别的准确性和效率得到了显著提升。然而,数据不平衡、模型泛化能力、计算资源消耗等问题仍然是制约深度学习在图像识别领域进一步发展的关键因素。本文将详细介绍深度学习在图像识别中的应用案例,并讨论解决现有挑战的可能策略。
下一篇
无影云桌面