Alexnet
1. 背景
AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多的更深的神经网络被提出。
2. 网络结构
原网络结构:
这个原述解释的是上面一半与下面一半分别跑在不同的GPU上,所以将原生网络简化成下面结构,来具体看看中间的过程如何计算。
详解:
输入接收一个三通道的二维224 × 224矩阵,故而原始输入图片输入网络应当先进行处理,resize到(224,224,3)。
使用步长为4 × 4,大小为11 × 11的卷积核对图像进行卷积,输出的特征(feature map)为96层(也即输出有96个通道)
详细计算方式在笔者的前一篇文章已有介绍,此处作推演。
输出的通道数与卷积核的个数(3通道,卷积核的通道数与原输入通道数应为一致)一致,所以输出通道数经过卷积操作是可以人为定义的。这里使用了96个11×11卷积核进行了卷积,输出为55×55×96,55怎么算来的呢,使用了公式N=(W-F+2P)/S + 1,W为输入大小,F为卷积核大小,P为填充值大小,S为步长大小,代入公式可得,N=(224-55+2 × 0)/4 +1=54,很多层都进行了LRN操作,可参考《深度学习饱受争议的局部响应归一化(LRN)详解》,笔者在这里就不作介绍了
然后进入池化操作,池化操作不改变输出通道数,池化的pool_size为3 ×3,故而输出大小为(55-3)/2+1=27,故最终输出为27 × 27 × 96
然后经过same方式padding后,用5 × 5的卷积核进行了卷积操作,输出通道为256,same方式下经过计算输出为⌈ 27 /1 ⌉ = 27 ,输出大小不变,故最终输出为27 × 27 × 256
然后使用3 ×3的窗口,以步长为2 × 2的窗口进行最大池化操作,池化不改变通道数,输出为(27-3+0)/2 + 1 = 13,故输出大小为13 × 13 × 256,然后再经过same方式加padding,输出为⌈ 13 /1 ⌉ = 13 输出通道指定为384,也即用了384个3 × 3 的卷积核(卷积核个数等于输出通道数),最终输出为13 × 13 × 384 。然后保持384的输出通道不变,加一圈padding(即P=1),用3 × 3的卷积核进行卷积,输出为(13-3+2)/1 + 1 = 13,故最终输出为13 × 13 × 384 然后设置输出通道为256,加一圈padding(即P=1),用3 × 3的卷积核进行卷积,输出为(13-3+2)/1 + 1 = 13,故最终输出为13 × 13 × 256 然后使用3 × 3的窗口大小、2 × 2的步长进行最大池化操作,池化不改变通道数,通道数仍为256,输出为(13-3+0)/2 + 1 = 6,故最终输出为6 × 6 × 256
由于FC(全连接层)只接收一维向量,故需要将6 × 6 × 256 转换成1 × 1 × 9216的向量,输入为9216个参数,这个过程形象的成为拍扁的过程,原理是用与原featuremap大小相同的卷积核进行卷积,个数即输出通道数,然后经过三层FC,再通过softmax分类器进行分类,softmax的输出个数即你要分的类别数,FC层中的过程相当于用1 × 1的卷积核进行卷积的过程。