机器学习算法之砖瓦:向量详解

简介: 机器学习算法之砖瓦:向量详解

机器学习向量在非常多的地方会用到,因此它是机器学习的砖瓦,也是我们学习机器学习算法的基础。


向量是线性代数中的基本概念,也是机器学习的基础数据表示形式。例如计算机阅读文本的过程首先就会将文本分词,然后用向量表示。这是因为向量很适合在高维空间中表达和处理。在机器学习中会接触到的诸如投影、降维的概念,都是在向量的基础上做的。


向量虽然在机器学习不同语境下,向量的意义各不相同,但并不妨碍我们将其归纳为含有数量级与方向的量。这样一来,向量便能搭载着数据的逻辑关系及权重,从而让数据集被输入编码器,形成数组,随之进入【深度】机器学习模型运算。


上面说完之后,你是否仍然感觉到比较模糊,那么这里给大家说向量的由来,也就是向量的发展历史。


向量的历史



向量又称为矢量,最初被应用于物理学,很多物理量如力、速度、位移以及电场强度、磁感应强度等都是向量.大约公元前 350 年前,古希腊著名学者亚里士多德就知道了力可以表示成向量,两个力的组合作用可用著名的平行四边形法则来得到. “向量”一词来自力学、解析几何中的有向线段,最先使用有向线段表示向量的是英国著名科学家牛顿.


向量能够进入数学并得到发展,首先应从复数的几何表示谈起.18 世纪末期,挪威测量学家威塞尔首次利用坐标平面上的点来表示复数 a+bi,并利用具有几何意义的复数运算来定义向量的运算,把坐标平面上的点用向量表示出来,并把向量的几何表示用于研究几何问题与三角问题.人们逐步接受了复数,也学会了利用复数来表示和研究平面中的向量,向量就这样平静地进入了数学,但复数的利用是受限制的,因为它仅能用于表示平面,若有不在同一平面上的力作用于同一物体,则需要寻找所谓三维“复数”以及相应的运算体系.


19 世纪中期,英国数学家汉密尔顿发明了四元数(包括数量部分和向量部分),以代表空间的向量,他的工作为向量代数和向量分析的建立奠定了基础.随后,电磁理论的发现者,英国的数学物理学家麦克思韦尔把四元数的数量部分和向量部分分开处理,从而创造了大量的向量分析.


从数学发展史来看,历史上很长一段时间,空间的向量结构并未被数学家们所认识,直到 19 世纪末 20 世纪初,人们才把空间的性质与向量运算联系起来,使向量成为具有一套优良运算通性的数学体系.现今,向量空间的概念,已成了数学中最基本的概念和线性代数的中心内容,它的理论和方法在自然科学的各领域中得到了广泛的应用,而向量及其线性运算也为“向量空间”这一抽象的概念提供了一个具体的模型.


向量的符号的历史演变:1806 年,瑞士人阿尔冈以A! "B 表示一个有向线段或向量(Vectors);麦比乌斯(1827 年)则以 AB 表示一起点为 A 而终点为B 的向量,这用法为相当广泛的数学家所接受;与他同时代的哈密顿、吉布斯等人则以一小写希腊字母表示向量;1896 年,沃依洛特区分了“极向量”及“轴向量”;1912 年,兰格文以 a 表示极向量,其后于字母上加箭头来表示向量的方法逐渐流行,尤其在手写稿中.一些作者为了方便印刷,以粗黑体小写字母 a,b 等表示向量,这两种符号一直沿用至今.


小结

由上面我们看到向量并不是一开始就存在的,也不是一开始就在出现在代数几何中,而是从现实生活中来,也就是从物理,比如我们搬东西,或推车等,这些都是有方向和大小的。然后慢慢进入数学,而且进入数学后,向量竟然可以计算。而且向量加减运算符合平行四边形和三角形。这个内在的规律的发现,不得不佩服数学家。正因为有了这些规律的总结,才让机器更加智能。


17044d55cb02a6fbb0b16d75c50904d7.png


向量运算视频:

链接:

https://pan.baidu.com/s/1pXorY4HxcvGPI_w1lDImlw 提取码: xx8u


向量的表示


一个向量就是一列数,这些数是有序排列的,如下图

9a66eb6db44d019fa29536f1495ab204.jpg


我们在【二维】坐标中,一个向量可以这样表示a向量=[x1,x2],对于上面x向量的表示,则为x在多维坐标中的表示。

对于向量的表示,其实我们更容易理解的场景则是把向量看做一个点,每个元素是坐标轴上的坐标。


下面我们将向量在推荐中的实现例子,给大家介绍下。


使用MapReduce实现推荐,如何转换为向量:


同样我们这举例推荐算法中如何将实际问题转换为向量的。这里我们借用数据算法  Hadoop Spark大数据处理技巧基于内容的电影推荐,这里使用的是MapReduce,其实思想都是差不多的,我们也可以使用Spark或则Flink。


首先我们基于电影推荐有三个阶段:

5dc2589399d7b4090a268c2664d2038b.png

7deb2d07d26033ff73ac7cdac34fffa1.png

e67297e44dd7a68aed9a2bce034d5b07.jpg

730717d45d807d6a4f6cd20b29af9df9.png

40005009bc8a998473b8ea2acac71e1f.jpg

c3021b45be7e6406887ddaceeb7d5f29.jpg

5f08c2139c1da2ca897b20ff2e2856d8.jpg

62a85b046fbb071d513b944da1583fee.jpg

02e150b0681b225bf6f3eeae29048cd2.jpg

787ffa06619e9091b8cc30e0668d5b01.jpg

879b21682029944375e275af34610d38.jpg

总结


上面我们看到,为了找到两个电影的相似度,首先要将原始的数据最终转换为两个电影向量,有了向量,我们就可以求相似度,这样我们就可以更准确的推荐大家喜欢的电影。这就是向量在机器学习或则算法中的作用。


目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
7月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
8月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
328 6
|
10月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
11月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
2024 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
11月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
277 14
|
10月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
250 0
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
12月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
338 2

热门文章

最新文章