高级神经网络Keras+CNN-GRU-Attention负荷预测(Python代码实现)

简介: 高级神经网络Keras+CNN-GRU-Attention负荷预测(Python代码实现)

 目录

1 高级神经网络Keras知识点讲解及入门算例

2  CNN-GRU-Attention负荷预测

2.1 Python代码实现

2.2 运行结果

3 高级神经网络Keras+CNN-GRU-Attention负荷预测(Python代码+数据)


1 高级神经网络Keras知识点讲解及入门算例

【数学建模】“华为杯”高级神经网络Keras(Python代码实现)

2  CNN-GRU-Attention负荷预测

2.1 Python代码实现

部分代码:

# 分为输入输出,将前一采样点的天气因素和电力负荷作为输入,后一采样点的作为输出标签

train_X, train_y = train[:, :-1], train[:, -1]

val_X, val_y = val[:, :-1], val[:, -1]

test_X, test_y = test[:, :-1], test[:, -1]

# print(train_X.shape[1])

# 重塑成3D形状 [样例, 时间步, 特征],该3D形状为循环神经网络的固定要求的输出维度要求

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))

val_X = val_X.reshape((val_X.shape[0], 1, val_X.shape[1]))

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))

# print(train_X)

# window_size设置窗口大小为1,可以理解为时间步为1,特征数为7

window_size = 1

fea_num = 7

# 按照keras的要求搭建神经网络

model = keras.Sequential()

# 设置输入数据的大小

model.add(Input((window_size, fea_num)))

model.add(Reshape((window_size, fea_num, 1)))

model.add(Conv2D(filters=32, kernel_size=3, strides=1, padding="same", activation="relu"))

model.add(MaxPooling2D(pool_size=2, strides=1, padding="same"))

model.add(Dropout(0.3))

model.add(Reshape((window_size, -1)))

model.add(GRU(10, return_sequences=True))

model.add(GRU(20, return_sequences=True))

model.add(Attention(50))

model.add(Dense(10, activation="relu"))

model.add(Dense(1))

print(model.summary())

# 对网络进行编译,选择计算误差的函数,优化器。

model.compile(loss='mse', optimizer='adam', metrics=['mse'])

# 拟合网络,对模型进行50轮的训练,每个批次512个数据,将验证数据集输入网络进行验证。

history = model.fit(train_X, train_y, epochs=50, batch_size=512, verbose=2, validation_data=(val_X, val_y))

model.save('CNN-LSTM-Attention.h5')

# 训练完了以后利用训练好的模型作出预测

yhat = model.predict(test_X)

数据:

2.2 运行结果

image.gif

image.gif

image.gif

image.gif

3 高级神经网络Keras+CNN-GRU-Attention负荷预测(Python代码+数据)

链接:https://pan.baidu.com/s/1rE5xcvUBOtVDNFrNcJcXqg 

提取码:jntx

--来自百度网盘超级会员V3的分享


相关文章
|
6月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【8月更文挑战第1天】在当今科技飞速发展的时代,AI已成为日常生活中不可或缺的一部分。神经网络作为AI的核心,通过模拟人脑中的神经元连接方式处理复杂数据模式。利用Python及其强大的库TensorFlow,我们可以轻松构建神经网络模型。示例代码展示了如何建立一个含有两层隐藏层的简单神经网络,用于分类任务。神经网络通过反向传播算法不断优化权重和偏置,从而提高预测准确性。随着技术的进步,神经网络正变得越来越深、越来越复杂,能够应对更加艰巨的挑战,推动着AI领域向前发展。
63 2
|
5月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
58 10
|
6月前
|
机器学习/深度学习 人工智能 算法
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
眼疾识别系统,使用Python作为主要编程语言进行开发,基于深度学习等技术使用TensorFlow搭建ResNet50卷积神经网络算法,通过对眼疾图片4种数据集进行训练('白内障', '糖尿病性视网膜病变', '青光眼', '正常'),最终得到一个识别精确度较高的模型。然后使用Django框架开发Web网页端可视化操作界面,实现用户上传一张眼疾图片识别其名称。
127 9
【眼疾病识别】图像识别+深度学习技术+人工智能+卷积神经网络算法+计算机课设+Python+TensorFlow
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
|
5月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【9月更文挑战第10天】神经网络是开启人工智能大门的钥匙,不仅是一种技术,更是模仿人脑思考的奇迹。本文从基础概念入手,通过Python和TensorFlow搭建手写数字识别的神经网络,逐步解析数据加载、模型定义、训练及评估的全过程。随着学习深入,我们将探索深度神经网络、卷积神经网络等高级话题,并掌握优化模型性能的方法。通过不断实践,你将能构建自己的AI系统,解锁机器学习的无限潜能。
101 0
|
6月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
77 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
6月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络入门到精通:Python带你搭建AI思维,解锁机器学习的无限可能
【8月更文挑战第3天】踏入人工智能领域,神经网络是开启智慧之门的钥匙。它不仅是一种技术,更是模仿人脑学习与推理的思维方式。从理解神经元间的连接到构建神经网络的基本概念,再到使用Python与TensorFlow搭建手写数字识别模型,每一步都揭示着机器学习的奥秘。随着深入学习,我们将探索更高级的主题,比如深度神经网络、卷积神经网络和循环神经网络,以及如何优化模型性能。掌握背后的数学原理,将帮助我们设计更高效准确的模型。在这个旅程中,Python将是我们的得力助手,引领我们探索AI世界的无限可能。
72 2
|
6月前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络不再是黑魔法!Python带你一步步拆解,让AI学习看得见
【8月更文挑战第3天】神经网络,曾被视为难以触及的黑魔法,现已在Python的助力下变得平易近人。以TensorFlow或PyTorch为“魔法杖”,仅需几行Python代码即可构建强大的AI模型。从零开始,我们将教导AI识别手写数字,利用经典的MNIST数据集。通过数据加载、预处理至模型训练与评估,每个步骤都如精心编排的舞蹈般清晰可见。随着训练深入,AI逐渐学会辨认每个数字,其学习过程直观展现。这不仅揭示了神经网络的奥秘,更证明了任何人都能借助Python创造AI奇迹,共同探索未来的无限可能。
55 2
|
6月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
83 0
|
6月前
|
机器学习/深度学习 测试技术 API
【Python-Keras】Keras搭建神经网络模型的Model解析与使用
这篇文章详细介绍了Keras中搭建神经网络模型的`Model`类及其API方法,包括模型配置、训练、评估、预测等,并展示了如何使用Sequential模型和函数式模型来构建和训练神经网络。
121 1

热门文章

最新文章