【读书笔记】Algorithms for Decision Making(13)

简介: 本部分将简单游戏扩展到具有多个状态的连续上下文。马尔可夫博弈可以看作是多个具有自己奖励函数的智能体的马尔可夫决策过程。

五、多智能体系统(2)

本部分将简单游戏扩展到具有多个状态的连续上下文。马尔可夫博弈可以看作是多个具有自己奖励函数的智能体的马尔可夫决策过程。


2. 次序问题

马尔可夫博弈的结构如下:

struct MG
    γ # discount factor
    ℐ # agents
    𝒮 # state space
    𝒜 # joint action space
    T # transition function
    R # joint reward function
end

马尔可夫决策是从状态到简单博弈决策的映射。

struct MGPolicy
    p # dictionary mapping states to simple game policies
    MGPolicy(p::Base.Generator) = new(Dict(p))
end

(πi::MGPolicy)(s, ai) = πi.p[s](ai)

(πi::SimpleGamePolicy)(s, ai) = πi(ai)

probability(𝒫::MG, s, π, a) = prod(πj(s, aj) for (πj, aj) in zip(π, a))
reward(𝒫::MG, s, π, i) =
    sum(𝒫.R(s,a)[i]*probability(𝒫,s,π,a) for a in joint(𝒫.𝒜))
transition(𝒫::MG, s, π, s′) =
    sum(𝒫.T(s,a,s′)*probability(𝒫,s,π,a) for a in joint(𝒫.𝒜))

function policy_evaluation(𝒫::MG, π, i)
    𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
    p(s,a) = prod(πj(s, aj) for (πj, aj) in zip(π, a))
    R′ = [sum(R(s,a)[i]*p(s,a) for a in joint(𝒜)) for s in 𝒮]
    T′ = [sum(T(s,a,s′)*p(s,a) for a in joint(𝒜)) for s in 𝒮, s′ in 𝒮]
    return (I - γ*T′)\R′
end

2.1 响应模型

  • 最佳响应

    function best_response(𝒫::MG, π, i)
        𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
        T′(s,ai,s′) = transition(𝒫, s, joint(π, SimpleGamePolicy(ai), i), s′)
        R′(s,ai) = reward(𝒫, s, joint(π, SimpleGamePolicy(ai), i), i)
        πi = solve(MDP(γ, 𝒮, 𝒜[i], T′, R′))
        return MGPolicy(s => SimpleGamePolicy(πi(s)) for s in 𝒮)
    end
  • Softmax响应

    function softmax_response(𝒫::MG, π, i, λ)
        𝒮, 𝒜, R, T, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T, 𝒫.γ
        T′(s,ai,s′) = transition(𝒫, s, joint(π, SimpleGamePolicy(ai), i), s′)
        R′(s,ai) = reward(𝒫, s, joint(π, SimpleGamePolicy(ai), i), i)
        mdp = MDP(γ, 𝒮, joint(𝒜), T′, R′)
        πi = solve(mdp)
        Q(s,a) = lookahead(mdp, πi.U, s, a)
        p(s) = SimpleGamePolicy(a => exp(λ*Q(s,a)) for a in 𝒜[i])
        return MGPolicy(s => p(s) for s in 𝒮)
    end

2.2 Nash均衡

Nash均衡与之前形式相同,可用非线性规划来解决:

function tensorform(𝒫::MG)
    ℐ, 𝒮, 𝒜, R, T = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.R, 𝒫.T
    ℐ′ = eachindex(ℐ)
    𝒮′ = eachindex(𝒮)
    𝒜′ = [eachindex(𝒜[i]) for i in ℐ]
    R′ = [R(s,a) for s in 𝒮, a in joint(𝒜)]
    T′ = [T(s,a,s′) for s in 𝒮, a in joint(𝒜), s′ in 𝒮]
    return ℐ′, 𝒮′, 𝒜′, R′, T′
end

function solve(M::NashEquilibrium, 𝒫::MG)
    ℐ, 𝒮, 𝒜, R, T = tensorform(𝒫)
    𝒮′, 𝒜′, γ = 𝒫.𝒮, 𝒫.𝒜, 𝒫.γ
    model = Model(Ipopt.Optimizer)
    @variable(model, U[ℐ, 𝒮])
    @variable(model, π[i=ℐ, 𝒮, ai=𝒜[i]] ≥ 0)
    @NLobjective(model, Min,
        sum(U[i,s] - sum(prod(π[j,s,a[j]] for j in ℐ)
            * (R[s,y][i] + γ*sum(T[s,y,s′]*U[i,s′] for s′ in 𝒮))
            for (y,a) in enumerate(joint(𝒜))) for i in ℐ, s in 𝒮))
    @NLconstraint(model, [i=ℐ, s=𝒮, ai=𝒜[i]],
        U[i,s] ≥ sum(
            prod(j==i ? (a[j]==ai ? 1.0 : 0.0) : π[j,s,a[j]] for j in ℐ)
            * (R[s,y][i] + γ*sum(T[s,y,s′]*U[i,s′] for s′ in 𝒮))
            for (y,a) in enumerate(joint(𝒜))))
    @constraint(model, [i=ℐ, s=𝒮], sum(π[i,s,ai] for ai in 𝒜[i]) == 1)
    optimize!(model)
    π′ = value.(π)
    πi′(i,s) = SimpleGamePolicy(𝒜′[i][ai] => π′[i,s,ai] for ai in 𝒜[i])
    πi′(i) = MGPolicy(𝒮′[s] => πi′(i,s) for s in 𝒮)
    return [πi′(i) for i in ℐ]
end

2.3 Fictitious Play

mutable struct MGFictitiousPlay
    𝒫 # Markov game
    i # agent index
    Qi # state-action value estimates
    Ni # state-action counts
end

function MGFictitiousPlay(𝒫::MG, i)
    ℐ, 𝒮, 𝒜, R = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.R
    Qi = Dict((s, a) => R(s, a)[i] for s in 𝒮 for a in joint(𝒜))
    Ni = Dict((j, s, aj) => 1.0 for j in ℐ for s in 𝒮 for aj in 𝒜[j])
    return MGFictitiousPlay(𝒫, i, Qi, Ni)
end

function (πi::MGFictitiousPlay)(s)
    𝒫, i, Qi = πi.𝒫, πi.i, πi.Qi
    ℐ, 𝒮, 𝒜, T, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.R, 𝒫.γ
    πi′(i,s) = SimpleGamePolicy(ai => πi.Ni[i,s,ai] for ai in 𝒜[i])
    πi′(i) = MGPolicy(s => πi′(i,s) for s in 𝒮)
    π = [πi′(i) for i in ℐ]
    U(s,π) = sum(πi.Qi[s,a]*probability(𝒫,s,π,a) for a in joint(𝒜))
    Q(s,π) = reward(𝒫,s,π,i) + γ*sum(transition(𝒫,s,π,s′)*U(s′,π) for s′ in 𝒮)
    Q(ai) = Q(s, joint(π, SimpleGamePolicy(ai), i))
    ai = argmax(Q, 𝒫.𝒜[πi.i])
    return SimpleGamePolicy(ai)
end

function update!(πi::MGFictitiousPlay, s, a, s′)
    𝒫, i, Qi = πi.𝒫, πi.i, πi.Qi
    ℐ, 𝒮, 𝒜, T, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.T, 𝒫.R, 𝒫.γ
    for (j,aj) in enumerate(a)
        πi.Ni[j,s,aj] += 1
    end
    πi′(i,s) = SimpleGamePolicy(ai => πi.Ni[i,s,ai] for ai in 𝒜[i])
    πi′(i) = MGPolicy(s => πi′(i,s) for s in 𝒮)
    π = [πi′(i) for i in ℐ]
    U(π,s) = sum(πi.Qi[s,a]*probability(𝒫,s,π,a) for a in joint(𝒜))
    Q(s,a) = R(s,a)[i] + γ*sum(T(s,a,s′)*U(π,s′) for s′ in 𝒮)
    for a in joint(𝒜)
        πi.Qi[s,a] = Q(s,a)
    end
end

2.4 梯度上升

mutable struct MGGradientAscent
    𝒫 # Markov game
    i # agent index
    t # time step
    Qi # state-action value estimates
    πi # current policy
end

function MGGradientAscent(𝒫::MG, i)
    ℐ, 𝒮, 𝒜 = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜
    Qi = Dict((s, a) => 0.0 for s in 𝒮, a in joint(𝒜))
    uniform() = Dict(s => SimpleGamePolicy(ai => 1.0 for ai in 𝒫.𝒜[i]) for s in 𝒮)
    return MGGradientAscent(𝒫, i, 1, Qi, uniform())
end

function (πi::MGGradientAscent)(s)
    𝒜i, t = πi.𝒫.𝒜[πi.i], πi.t
    ϵ = 1 / sqrt(t)
    πi′(ai) = ϵ/length(𝒜i) + (1-ϵ)*πi.πi[s](ai)
    return SimpleGamePolicy(ai => πi′(ai) for ai in 𝒜i)
end

function update!(πi::MGGradientAscent, s, a, s′)
    𝒫, i, t, Qi = πi.𝒫, πi.i, πi.t, πi.Qi
    ℐ, 𝒮, 𝒜i, R, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜[πi.i], 𝒫.R, 𝒫.γ
    jointπ(ai) = Tuple(j == i ? ai : a[j] for j in ℐ)
    α = 1 / sqrt(t)
    Qmax = maximum(Qi[s′, jointπ(ai)] for ai in 𝒜i)
    πi.Qi[s, a] += α * (R(s, a)[i] + γ * Qmax - Qi[s, a])
    u = [Qi[s, jointπ(ai)] for ai in 𝒜i]
    π′ = [πi.πi[s](ai) for ai in 𝒜i]
    π = project_to_simplex(π′ + u / sqrt(t))
    πi.t = t + 1
    πi.πi[s] = SimpleGamePolicy(ai => p for (ai, p) in zip(𝒜i, π))
end

2.5 Nash Q-学习

mutable struct NashQLearning
    𝒫 # Markov game
    i # agent index
    Q # state-action value estimates
    N # history of actions performed
end

function NashQLearning(𝒫::MG, i)
    ℐ, 𝒮, 𝒜 = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜
    Q = Dict((j, s, a) => 0.0 for j in ℐ, s in 𝒮, a in joint(𝒜))
    N = Dict((s, a) => 1.0 for s in 𝒮, a in joint(𝒜))
    return NashQLearning(𝒫, i, Q, N)
end

function (πi::NashQLearning)(s)
    𝒫, i, Q, N = πi.𝒫, πi.i, πi.Q, πi.N
    ℐ, 𝒮, 𝒜, 𝒜i, γ = 𝒫.ℐ, 𝒫.𝒮, 𝒫.𝒜, 𝒫.𝒜[πi.i], 𝒫.γ
    M = NashEquilibrium()
    𝒢 = SimpleGame(γ, ℐ, 𝒜, a -> [Q[j, s, a] for j in ℐ])
    π = solve(M, 𝒢)
    ϵ = 1 / sum(N[s, a] for a in joint(𝒜))
    πi′(ai) = ϵ/length(𝒜i) + (1-ϵ)*π[i](ai)
    return SimpleGamePolicy(ai => πi′(ai) for ai in 𝒜i)
end

function update!(πi::NashQLearning, s, a, s′)
    𝒫, ℐ, 𝒮, 𝒜, R, γ = πi.𝒫, πi.𝒫.ℐ, πi.𝒫.𝒮, πi.𝒫.𝒜, πi.𝒫.R, πi.𝒫.γ
    i, Q, N = πi.i, πi.Q, πi.N
    M = NashEquilibrium()
    𝒢 = SimpleGame(γ, ℐ, 𝒜, a′ -> [Q[j, s′, a′] for j in ℐ])
    π = solve(M, 𝒢)
    πi.N[s, a] += 1
    α = 1 / sqrt(N[s, a])
    for j in ℐ
        πi.Q[j,s,a] += α*(R(s,a)[j] + γ*utility(𝒢,π,j) - Q[j,s,a])
    end
end

相关文章
|
安全 UED
陪玩平台源码具有哪些优点,开发怎样实现
陪玩平台源码不仅实现陪玩下单、多人聊天等功能,还实现了用户直播、礼物打赏、快速匹配等功能,丰富系统功能,满足用户更多需求。
|
图形学 Windows 数据可视化
带你读《Unity游戏开发(原书第3版)》之一:Unity介绍
本书主要介绍Unity2018的使用和游戏开发流程中涉及的各种知识。每一章的结构特别清晰,先综述该章要介绍的内容,然后一步步深入讲解,中间穿插着很多动手做的实践操作,可以让读者加深对某个概念、方法的理解,每章的最后还有一个小测验和一个稍微大一点的实践练习,用于巩固该章的学习内容。
|
存储 弹性计算 文件存储
悦跑圈上云之路:你所跑的每一步背后的技术支撑
“悦跑圈”是一款基于社交型的跑步应用。记录专业化跑步数据,在排行榜与全国跑友比拼,在独有的社交平台(跑友圈)与跑友分享交流,另外还支持微博微信分享。截止2017年1月,悦跑圈APP用户规模已达3000万。
4975 0
|
4天前
|
数据采集 人工智能 安全
|
14天前
|
云安全 监控 安全
|
5天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
1162 152
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1813 9