【High 翻天】Higer-order Networks with Battiston Federico (2)

简介: 接上回说到了高阶的表示方法,接下来开始高阶系统的测量方法。

接上回说到了高阶的表示方法,接下来开始高阶系统的测量方法。

测量

具体来说就是可用于表征和量化高级系统每一个层次的结构特性的可观察性测量。

矩阵表示

In mathematics, the incidence matrix is the classical way to describe the relationships between two classes of objects.

图 $G = (V, E)$ 的关联矩阵是 $n \times m$ 矩阵 $I = \{I_{i \alpha}\}$:

  • $n$ 是节点数,$m$ 是边的数量;
  • $I_{i \alpha} = 1 \longleftrightarrow$ 节点 $i$ 和边 $\alpha$ 相关联;否则为 0。

将该定义也可拓展到超图,如下图[A]。

同样的,由于图中邻接矩阵和关联矩阵具有关系:$$A = I I^{\text{T}} - D.$$

在这里插入图片描述

中心化测度

网络中心性是节点相关的度量,量化一个节点在网络中的“中心”程度。

度(degree)

根据邻接矩阵可定义度为:
$${\text{deg}}(i) = \sum_{j = 1}^{n} a_{i j}.$$
进而,在高阶情形下定义广义的度为:
$$k_{d, \delta} (\alpha) = \sum_{\alpha^{\prime} \supset \alpha} a_{\alpha^{\prime}}.$$
此处的 $\alpha$ 指代 $\delta < d$ 维的单纯形。但对于加权图,权重影响,处理方式又稍显复杂,具体可参见1

路径(path)

顶点$v_i$的子类型图中心性是网络中从顶点$v_i$开始和结束的不同长度的闭合游动的数量,可以表示为:$$C_{sh} = \sum_{v_{j}} u_{i j} e_{\lambda_{j}},$$ 其中,$u_{i j}$是邻接矩阵的第$j$个特征向量的第$i$个分量。
在这里插入图片描述

特征向量中心

单个节点特征向量的中心性取决于其邻居的中心性,量化了节点对网络的影响,而非可能路径的影响。其被定义为:$$\chi_{v} = \frac{1}{\lambda} \sum_{t \sim v} \chi_{t} = \frac{1}{\lambda} \sum_{t \in G} a_{v t} \chi_{t}.$$

三元闭包和聚类系数

  • 网络分析中超越节点相关度量的一个关键概念是三元闭包。社会学认为,只有当两个人是三角形的一部分时,他们之间才会产生强烈的社会联系2。在图结构中,三元闭包表示为由第三条边闭合的长度为$2$的路径。聚类系数是一个重要的网络度量,它决定了节点邻域的密度。该系数也可以全局计算为边缘闭合的路径的总百分比,即三角形的一部分。

将上述定义延拓至高维的思路有二:

  • 通过增加局部聚类的定义,重新定义聚类系数;
  • 或者重新定义高维walk,来保证三元闭包的路径特性。

单纯同调

由于是个代数渣渣,所有此处略。

高阶Lapalacian算子

超图拉普拉斯

区别主要在最后一项:
$$L = D - A + \rho(K + (s - 1)I).$$
其中,$\rho = d/N$即平均度除以节点数;$K$是完全图矩阵。

组合拉普拉斯

在这里插入图片描述


  1. K. Kapoor, D. Sharma, J. Srivastava, Weighted node degree centrality for hypergraphs, in: 2013 IEEE 2nd Network Science Workshop (NSW), IEEE, 2013, pp. 152--155.
  2. M.S. Granovetter, The strength of weak ties, in: Social Networks, Elsevier, 1977, pp. 347--367.
相关文章
|
Ubuntu
LLVM编译源码
LLVM编译源码
473 0
|
机器学习/深度学习 网络架构 计算机视觉
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
YOLOv5改进 | 检测头篇 | 利用DBB重参数化模块魔改检测头实现暴力涨点 (附代码 + 详细修改教程)
844 3
|
8月前
|
机器学习/深度学习 存储 算法
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
反向传播算法虽是深度学习基石,但面临内存消耗大和并行扩展受限的问题。近期,牛津大学等机构提出NoProp方法,通过扩散模型概念,将训练重塑为分层去噪任务,无需全局前向或反向传播。NoProp包含三种变体(DT、CT、FM),具备低内存占用与高效训练优势,在CIFAR-10等数据集上达到与传统方法相当的性能。其层间解耦特性支持分布式并行训练,为无梯度深度学习提供了新方向。
344 1
NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
|
12月前
|
缓存 网络协议 安全
融合DNS技术产品和生态
本文介绍了阿里云在互联网基础资源领域的最新进展和解决方案,重点围绕共筑韧性寻址、赋能新质生产展开。随着应用规模的增长,基础服务的韧性变得尤为重要。阿里云作为互联网资源的践行者,致力于推动互联网基础资源技术研究和自主创新,打造更韧性的寻址基础服务。文章还详细介绍了浙江省IPv6创新实验室的成立背景与工作进展,以及阿里云在IPv6规模化部署、DNS产品能力升级等方面的成果。此外,阿里云通过端云融合场景下的企业级DNS服务,帮助企业构建稳定安全的DNS系统,确保企业在数字世界中的稳定运行。最后,文章强调了全链路极致高可用的企业DNS解决方案,为全球互联网基础资源的创新提供了中国标准和数字化解决方案。
|
10月前
|
存储 安全 区块链
去中心化存储:数据存储的新范式
去中心化存储:数据存储的新范式
546 91
|
9月前
|
人工智能 搜索推荐 图形学
ChatAnyone:阿里通义黑科技!实时风格化肖像视频生成框架震撼发布
阿里巴巴通义实验室推出的ChatAnyone框架,通过高效分层运动扩散模型和混合控制融合技术,实现高保真度、自然度的实时肖像视频生成。
364 13
ChatAnyone:阿里通义黑科技!实时风格化肖像视频生成框架震撼发布
|
UED
「Mac畅玩鸿蒙与硬件40」UI互动应用篇17 - 照片墙布局
本篇将带你实现一个简单的照片墙布局应用,通过展示多张图片组成照片墙效果,用户可以点击图片查看其状态变化。
377 67
「Mac畅玩鸿蒙与硬件40」UI互动应用篇17 - 照片墙布局
|
JavaScript 前端开发 机器人
Github 2024-06-17 开源项目周报 Top15
根据Github Trendings的统计,本周(2024年6月17日)共有15个项目上榜。按开发语言分类,Python项目最多,达6项;TypeScript和JavaScript各有3项;PHP、Blade、Lua、Dart及非开发语言项目各1项。这些项目涵盖从零构建技术、智能家居、高性能数据库到情感语音模型等多个领域,体现了开源社区的多样性和创新力。
517 0
|
11月前
|
数据可视化 数据挖掘 数据处理
B 端试用期考核指标
B端产品经理试用期考核指标涵盖了项目策划、用户需求理解、团队协作、技术能力、创新思维、项目管理、产品投放时间、产品质量、产品利润及基础服务接入等方面。这些指标通过自我评估和上级评估相结合的方式进行,分为优秀(5分)到不合格(1分)五个等级。具体内容包括制定合理项目计划、准确把握用户需求、有效沟通协调团队、掌握技术细节、提出创新方案等。实际案例展示了如何通过成功项目实施、解决业务痛点、优化产品功能等方式,全面评估产品经理的综合能力,确保其胜任后续工作任务。
482 0
|
边缘计算 人工智能 安全
探索边缘计算:定义、优势及未来趋势
探索边缘计算:定义、优势及未来趋势