C语言学习笔记—P29(<C语言高阶>+自定义类型:结构体,枚举,联合<1>+题例+图解)

简介: C语言学习笔记(<C语言高阶>+自定义类型:结构体,枚举,联合<1>+题例+图解)

时间改变的原本就是不坚定的东西!

What time changes is not firm!

目录

结构体

1 结构体的声明

1.1 结构的基础知识

1.2 结构的声明

1.3 特殊的声明

1.4 结构的自引用

1.5 结构体变量的定义和初始化

1.6 结构体内存对齐

1.7 修改默认对齐数

1.8 结构体传参

后记:●由于作者水平有限,文章难免存在谬误之处,敬请读者斧正,俚语成篇,恳望指教!                                                               ——By 作者:新晓·故知


结构体

       ♦结构体类型的声明

       ♦结构的自引用

       ♦结构体变量的定义和初始化

       ♦结构体内存对齐

       ♦结构体传参

       ♦结构体实现位段(位段的填充&可移植性)

枚举

       ♦枚举类型的定义

       ♦枚举的优点

       ♦枚举的使用

联合

       ♦联合类型的定义

       ♦联合的特点

       ♦联合大小的计算

结构体

1 结构体的声明

1.1 结构的基础知识

结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。

1.2 结构的声明

struct tag
{
  member - list;
}variable - list;

image.gif

例如描述一个学生:

struct Stu
{
 char name[20];//名字
 int age;//年龄
 char sex[5];//性别
 char id[20];//学号
}; //分号不能丢

image.gif

image.gif编辑

image.gif编辑

1.3 特殊的声明

在声明结构的时候,可以不完全的声明。

比如:

//匿名结构体类型
struct
{
  int a;
  char b;
  float c;
}x;
struct
{
  int a;
  char b;
  float c;
}a[20], * p;

image.gif

上面的两个结构在声明的时候省略掉了结构体标签(tag)。

那么问题来了?

//在上面代码的基础上,下面的代码合法吗?

p = &x;

警告: 编译器会把上面的两个声明当成完全不同的两个类型。 所以是非法的。

image.gif编辑

1.4 结构的自引用

在结构中包含一个类型为该结构本身的成员是否可以呢?

//代码1
struct Node
{
  int data;
  struct Node next;
};
//可行否?
如果可以,那sizeof(struct Node)是多少?

image.gif

正确的自引用方式:

//代码2
struct Node
{
 int data;
 struct Node* next;
};

image.gif

注意:

//代码3
typedef struct
{
  int data;
  Node* next;
}Node;
//这样写代码,可行否?
//解决方案:
typedef struct Node
{
  int data;
  struct Node* next;
}Node;

image.gif

image.gif编辑image.gif编辑image.gif编辑

image.gif编辑

1.5 结构体变量的定义和初始化

有了结构体类型,那如何定义变量,其实很简单。

struct Point
{
 int x;
 int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu        //类型声明
{
 char name[15];//名字
 int age;      //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
 int data;
 struct Point p;
 struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化

image.gif

1.6 结构体内存对齐

我们已经掌握了结构体的基本使用了。 现在我们深入讨论一个问题:计算结构体的大小。 这也是一个特别热门的考点: 结构体内存对齐

//练习1
struct S1 {
  char c1;
  int i;
  char c2;
};
printf("%d\n", sizeof(struct S1));
//练习2
struct S2
{
  char c1;
  char c2;
  int i;
};
printf("%d\n", sizeof(struct S2));
//练习3
struct S3
{
  double d;
  char c;
  int i;
};
printf("%d\n", sizeof(struct S3));
//练习4-结构体嵌套问题
struct S4
{
  char c1;
  struct S3 s3;
  double d;
};
printf("%d\n", sizeof(struct S4))

image.gif

考点

如何计算?

首先得掌握结构体的对齐规则:

1. 第一个成员在与结构体变量偏移量为0的地址处。

2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。 VS中默认的值为8

3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。

4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。

为什么存在内存对齐?

大部分的参考资料都是如是说的:

1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特 定类型的数据,否则抛出硬件异常。

2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访 问。

总体来说: 结构体的内存对齐是拿空间来换取时间的做法。

那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到: 让占用空间小的成员尽量集中在一起。

//例如:
struct S1
{
  char c1;
  int i;
  char c2;
};
struct S2
{
  char c1;
  char c2;
  int i;
};

image.gif

S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。

image.gif编辑image.gif编辑

image.gif编辑

image.gif编辑image.gif编辑

image.gif编辑image.gif编辑

image.gif编辑

1.7 修改默认对齐数

之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。

#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
  char c1;
  int i;
  char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
  char c1;
  int i;
  char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
  //输出的结果是什么?
  printf("%d\n", sizeof(struct S1));
  printf("%d\n", sizeof(struct S2));
  return 0;
}

image.gif

结论: 结构在对齐方式不合适的时候,我么可以自己更改默认对齐数。 百度笔试题: 写一个宏,计算结构体中某变量相对于首地址的偏移,并给出说明 考察: offsetof 宏的实现

1.8 结构体传参

分析一下代码:

struct S
{
  int data[1000];
  int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
  printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
  printf("%d\n", ps->num);
}
int main()
{
  print1(s);  //传结构体
  print2(&s); //传地址
  return 0;
}

image.gif

上面的 print1 和 print2 函数哪个好些?

答案是:首选print2函数。

原因:

函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。 如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的 下降。

出于安全性的考虑,传地址可以改变实参变量,但可以在传参时加上const。

结论: 结构体传参的时候,要传结构体的地址。

后记:

●由于作者水平有限,文章难免存在谬误之处,敬请读者斧正,俚语成篇,恳望指教!


                                ——By 作者:新晓·故知

相关文章
|
13天前
|
存储 C语言
如何在 C 语言中实现结构体的深拷贝
在C语言中实现结构体的深拷贝,需要手动分配内存并逐个复制成员变量,确保新结构体与原结构体完全独立,避免浅拷贝导致的数据共享问题。具体方法包括使用 `malloc` 分配内存和 `memcpy` 或手动赋值。
23 10
|
13天前
|
安全 编译器 Linux
【c语言】轻松拿捏自定义类型
本文介绍了C语言中的三种自定义类型:结构体、联合体和枚举类型。结构体可以包含多个不同类型的成员,支持自引用和内存对齐。联合体的所有成员共享同一块内存,适用于判断机器的大小端。枚举类型用于列举固定值,增加代码的可读性和安全性。文中详细讲解了每种类型的声明、特点和使用方法,并提供了示例代码。
14 3
|
12天前
|
存储 大数据 编译器
C语言:结构体对齐规则
C语言中,结构体对齐规则是指编译器为了提高数据访问效率,会根据成员变量的类型对结构体中的成员进行内存对齐。通常遵循编译器默认的对齐方式或使用特定的对齐指令来优化结构体布局,以减少内存浪费并提升性能。
|
17天前
|
编译器 C语言
共用体和结构体在 C 语言中的优先级是怎样的
在C语言中,共用体(union)和结构体(struct)的优先级相同,它们都是用户自定义的数据类型,用于组合不同类型的数据。但是,共用体中的所有成员共享同一段内存,而结构体中的成员各自占用独立的内存空间。
|
17天前
|
存储 C语言
C语言:结构体与共用体的区别
C语言中,结构体(struct)和共用体(union)都用于组合不同类型的数据,但使用方式不同。结构体为每个成员分配独立的内存空间,而共用体的所有成员共享同一段内存,节省空间但需谨慎使用。
|
22天前
|
编译器 C语言 C++
C语言结构体
C语言结构体
21 5
|
27天前
|
存储 C语言 C++
深入C语言,发现多样的数据之枚举和联合体
深入C语言,发现多样的数据之枚举和联合体
深入C语言,发现多样的数据之枚举和联合体
|
23天前
|
编译器 Linux C语言
C语言 之 结构体超详细总结
C语言 之 结构体超详细总结
13 0
|
26天前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
31 3
|
C语言
《C语言及程序设计》实践项目——枚举应用
返回:贺老师课程教学链接 【项目1-对称点】 设计函数,可以按指定的方式,输出一个平面点的对称点 下面给出枚举类型定义和main函数(测试函数),请写出output函数的实现。 #include&lt;stdio.h&gt; enum SymmetricStyle {axisx, axisy, point};//分别表示按x轴, y轴, 原点对称三种方式 void
1091 0