《C语言数据结构》———链表进阶之双向链表

简介: 《C语言数据结构》———链表进阶之双向链表

双向链表的概念


1、概念:概念:双向链表是每个结点除后继指针外还有⼀个前驱指针。双向链表也有带头结点结构和不带头结点结构两种,带头结点的双向链表更为常用;另外,双向链表也可以有循环和非循环两种结构,循环结构的双向链表更为常用。

1669438806009.jpg


二、双向链表的实现


头文件List.h

#pragma once
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int LTDateType;
typedef struct ListNode
{
  LTDateType date;
  struct ListNode* next;
  struct ListNode* prev;
}LTNode;
//void ListInit(LTNode** pphead);
void ListPrint(LTNode* phead);
void ListPopBack(LTNode* phead);
LTNode* ListInit();//初始化
LTNode* BuyLTNode(LTDateType x);
void ListPushBack(LTNode* phead, LTDateType x);
void ListPushFront(LTNode* phead, LTDateType x);
void ListPopFront(LTNode* phead);
LTNode* ListFind(LTNode* phead, LTDateType x);
//在pos前插入
void ListInsert(LTNode* pos, LTDateType x);
//删除pos位置的节点
void ListErease(LTNode* pos);
void ListDestory(LTNode* phead);


源文件List.C


#include"List.h"
LTNode* BuyLTNode(LTDateType x)
{
  LTNode* newnode = (LTNode*)malloc(sizeof(LTNode));
  if (newnode == NULL)
  {
  printf("malloc fail\n");
  exit(-1);
  }
  newnode->date = x;
  newnode->next = NULL;
  newnode->prev = NULL;
  return newnode;
}
//void ListInit(LTNode** pphead)
//{
//  assert(pphead);
//  *pphead = BuyLTNode(0);
//  (*pphead)->next = *pphead;
//  (*pphead)->prev = *pphead;
//}
LTNode* ListInit()
{
  LTNode* phead = BuyLTNode(0);
  phead->next = phead;
  phead->prev = phead;
  return phead;
}
void ListPrint(LTNode* phead)
{
  assert(phead);
  LTNode* cur = phead->next;
  while (cur != phead)
  {
  printf("%d ", cur->date);
  cur = cur->next;
  }
  printf("\n");
}
void ListPushBack(LTNode* phead, LTDateType x)
{
  assert(phead);
  LTNode* tail = phead->prev;
  LTNode* newnode = BuyLTNode(x);
  tail->next = newnode;
  newnode->prev = tail;
  newnode->next = phead;
  phead->prev = newnode;
}
void ListPushFront(LTNode* phead, LTDateType x)
{
  assert(phead);
  ListInsert(phead->next, x);
}
void ListPopBack(LTNode* phead)//尾删
{
  assert(phead);
  assert(phead->next != phead);//说明传进来的不只有phead,不然phead被free掉了。
  //LTNode* tail = phead->prev;
  //LTNode* tailPrev = tail->prev;
  //free(tail);
  //tail = NULL;
  //tailPrev->next = phead;
  //phead->prev = tailPrev;
  ListErease(phead->prev);
}
void ListPopFront(LTNode* phead)//头删
{
  assert(phead);
  assert(phead->next != phead);
  ListErease(phead->next);
}
LTNode* ListFind(LTNode* phead, LTDateType x)
{
  assert(phead);
  LTNode* cur = phead->next;
  while (cur != phead)
  {
  if (cur->date == x)
  {
    return cur;
  }
  cur = cur->next;
  }
  return NULL;
}
//void ListInsert(LTNode* pos, LTDateType x)
//{
//  assert(pos);
//  LTNode* newnode = BuyLTNode(x);
//  pos->prev->next = newnode;
//  newnode->prev = pos->prev;
//
//  pos->prev = newnode;
//  newnode->next = pos;
//
//}
//更好的写法
void ListInsert(LTNode* pos, LTDateType x)
{
  assert(pos);
  //无关写的顺序
  LTNode* newnode = BuyLTNode(x);
  LTNode* posPrev = pos->prev;
  newnode->next = pos;
  pos->prev = newnode;
  posPrev->next = newnode;
  newnode->prev = posPrev;
}
// 驼峰法
//函数和类型所以单词首字母大写
//变量:第一个单词小写后续单词首字母大写
void ListErease(LTNode* pos)
{
  assert(pos);
  LTNode* prev = pos->prev;
  LTNode* next = pos->next;
  free(pos);
  //此时要把pos置成空,不然pos就是野指针了
  pos = NULL;
  prev->next = next;//LT的新的prev指向pos->next;
  next->prev = prev;//LT的新的next的prev指向prev;
}
void ListDestory(LTNode* phead)
{
  assert(phead);
  LTNode* cur = phead->next;//从头结点的下一个位置开始。
  while (cur != phead)
  {
  LTNode* next = cur->next;//先记录,再free
  //ListErease(cur);//副用Erease函数实现destory
  free(cur);//
  cur = next;
  }
  free(phead);
  //phead = NULL;形参的改变不影响实参
}


三、链表与顺序表的差别

不同点 顺序表 链表
存储空间上 物理上一定连续 逻辑上连续,但物理上不一定连 续
随机访问 支持O(1) 不支持:O(N)
任意位置插入或者删除元 素 可能需要搬移元素,效率低O(N) 只需修改指针指向
插入 动态顺序表,空间不够时需要扩容 没有容量的概念
应用场景 元素高效存储+频繁访问 任意位置插入和删除频繁
缓存利用率


四、链表oj


1、链表中倒数第k个结点_牛客题霸_牛客网(链接)


思路:快慢指针法,fast先走k步, slow和fast同时走, fast走到尾时,slow就是倒数第k个


代码示例:

struct ListNode* FindKthToTail(struct ListNode* pListHead, int k ) {
    struct ListNode* slow, *fast;
    slow = fast = pListHead;
    while(k --)//走k步
    {
        //判断K是否大于链表的长度。
        if(fast == NULL) return NULL;
        fast = fast->next;
    }
    while(fast)//当fast 指针走到尾时
    {
        slow = slow->next;
        fast = fast->next;
    }
    return slow;
}

第二种写法:

struct ListNode* FindKthToTail(struct ListNode* pListHead, int k )
{
    struct ListNode* p1 = NULL, *p2 = NULL;
    p1 = pListHead;
    p2 = pListHead;
    int a = k;
    int c = 0;//记录节点个数
      //p1指针先跑,并且记录节点数,当p1指针跑了k-1个节点后,p2指针开始跑,
        //当p1指针跑到最后时,p2所指指针就是倒数第k个节点
    while(p1)//当p1 不为空时
    {
        p1 = p1->next;
        c ++;//节点个数增加
        if(k < 1) p2 = p2->next;
        k --;    
    }
    if(c < a) return NULL;
    return p2;
}

 2、21. 合并两个有序链表(链接)

思路:归并的思想,将小的值尾插到新链表。时间复杂度为n^2;如果再定义一个尾指针, 每次记录尾。

1669438935656.jpg

1669438945622.jpg

struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2)
{
    if(list1 == NULL)//list1和list2分别是两个链表的头指针
        return list2;
    if(list2 == NULL)
        return list1;
    struct ListNode* head = NULL, *tail = NULL;//head是新链表的头指针,tail是新链表的尾指针
    while(list1 && list2)
    {
            if(list1->val < list2->val)
            {
                if(tail == NULL)//这一步不太理解
                {
                    head = tail = list1;
                }
                else
                {
                    tail->next = list1;//先传指针指向
                    tail = list1;//再把list 的地址传给tail,相当于tail往前挪了一步。
                }
                list1 = list1->next;
            }
            else
            {
                if(tail == NULL)
                {
                    head = tail = list2;
                }
                else
                {
                    tail->next = list2;
                    tail = list2;//传地址
                }
                 list2 = list2->next;
            }
    }
    if(list1)
    {
        tail->next = list1;//如果链表1不为空,而此时链表二为空,则直接把链表二的值连接过去就好了。
    }
    if(list2)
    {
        tail->next = list2;
    }
    return head;
}

方法二:设置一个哨兵位头结点

head存随机值, head->next存第一个链表的值。起到简化代码的作用。

一般的链表没有设置哨兵位头结点。

struct ListNode* mergeTwoLists(struct ListNode* list1, struct ListNode* list2)
{
    struct ListNode* head = NULL, *tail = NULL;
    head = tail = (struct ListNode*)malloc(sizeof(struct ListNode));
    head->next = NULL;
    while(list1 && list2)
    {
            if(list1->val < list2->val)
            {
                    tail->next = list1;//先传指针指向
                    tail = list1;//再把list 的地址传给tail,相当于tail往前挪了一步。
                list1 = list1->next;
            }
            else
            {
                    tail->next = list2;
                    tail = list2;//传地址
                    list2 = list2->next;
            }
    }
    if(list1)
    {
        tail->next = list1;//如果链表1不为空,而此时链表二为空,则直接把链表二的值连接过去就好了。
    }
    if(list2)
    {
        tail->next = list2;
    }
    //解决内存泄漏问题;
    struct ListNode* list = head->next;
    free(head);
    return list;
}


3、链表分割_牛客题霸_牛客网(链接)


思路:新设置两个链表,小于x的插到第一个链表,大于x的插到第二个链表。


1669438988352.jpg

定义四个指针:LessHead, LessTail,GreatHead, GreatTail.


原链表的值分别尾插到这两个链表, 然后分别更新LessTail,和GreatTail;


最后LessTail的指针再指向GreatHead。完成两个链表的连接。


想极端场景:


1、所有值比x小


2、所有值比x大


3、比x大和小都有,最后一个值是比x小


4、比x大和小都有,最后一个值是比x大


1669438999035.jpg


构成环链表,造成死循环。

//设置哨兵位
class Partition {
  public:
    ListNode* partition(ListNode* pHead, int x) {
        struct ListNode* lessHead, *lessTail, *greatHead, *greatTail;
        lessHead = lessTail = (struct ListNode*)malloc(sizeof(struct ListNode));
        greatHead = greatTail = (struct ListNode*)malloc(sizeof(struct ListNode));
        lessTail->next = greatTail->next = NULL;
        struct ListNode* cur = pHead;
        while (cur) {
            if (cur->val < x) {
                lessTail->next = cur;
                lessTail = lessTail->next;
            } else {
                greatTail->next = cur;
                greatTail = greatTail->next;
            }
            cur = cur->next;
        }
        //完成链接工作
        lessTail->next = greatHead->next;
        greatTail->next = NULL;//切断greetTail的最后与greetHead的链接
        struct ListNode* list = lessHead->next;
        free(lessHead);
        free(greatHead);
        return list;
    }
};

4、链表的回文结构_牛客题霸_牛客网 (链接)


思路:找出链表的中间节点, 然后逆置,判断前后链表是否一致,若一致,则说明该链表是回文结构。


1669439031231.jpg


为什么奇数个时也能过,


例如:1 2 3 2 1


逆置完变为了 1 2  1 2  3 ;


当A走到2的位置时2->next = 3, rHead走到的 2->next = 3, 相等。

class PalindromeList {
public:
    struct ListNode* middleNode(struct ListNode* head)
{
    struct ListNode* slow, * fast;
    slow = fast = head;
    while(fast && fast->next) //想的是结束的条件,写的是继续的条件
    {
        slow = slow->next;
        fast = fast->next->next;
    }
    return slow;
}
    struct ListNode* reverseList(struct ListNode* head)
{
    struct ListNode* NewHead = NULL;
    struct ListNode* cur = head;
    while(cur)
    {
        struct ListNode* next = cur->next;
        //头插
        cur->next = NewHead;//更多代表链表的指向方向。
        NewHead = cur;//接着把地址传过来(更新)
        cur = next;//(更新)
    }
    return NewHead;
    }
    bool chkPalindrome(ListNode* A) {
        struct ListNode* mid = middleNode(A);
        struct ListNode*rHead = reverseList(mid);//应该逆置mid,中间结点。
        while(A && rHead)
        {
            if(A->val == rHead->val)
            {
                A = A->next;
                rHead = rHead->next;
            }
            else
            {
                return false;
            }
        }
        return true;
    }
};

5、力扣相交链表(链接)


思路1:A链表每个节点B跟链表依次比较,如果有相等,就是相交,第一个相等就是交点。


时间复杂度:o(N*M);


思路二:如果两个链表相交,则这两个链表的最后一个元素的地址相同。


包含思路二三:


1669439059018.jpg


代码示例:

struct ListNode *getIntersectionNode(struct ListNode *headA, struct ListNode *headB) 
{
    struct ListNode* tailA, *tailB;//因为之后还要用到headA,和headB,所以要用tail来进行迭代。
    tailA = headA, tailB = headB;
    int lenA = 1, lenB = 1;
    while(tailA)//求出A的尾
    {
        tailA = tailA->next;
        ++lenA;//求出A的长度
    }   
    while(tailB)//求出链表B的尾
    {
        tailB = tailB->next;
        ++lenB;//求出B的长度
    }
    if(tailA != tailB)//如果两个链表的尾不相等,则返回空
    {
        return NULL;
    }
    //相交,求交点,长的先走差距步,再同时找交点。
    struct ListNode* shortList = headA, *longList = headB;//默认A短B长
    if(lenA > lenB)
    {
        shortList = headB;
        longList = headA;
    }
    int gap = abs(lenA - lenB);//求出差距
    while(gap--)//减gap次,若是--gap,就是减了gap - 1次
    {
        longList = longList->next;
    }
    while(shortList && longList)
    {
        if(shortList == longList)
        return shortList;//此时shortList == longList;
        longList = longList->next;
        shortList = shortList->next;
    }
    //最最关键的一步:就是要在外面返回一个值,因为编译器不会判断代码在哪返回,只会检查你的代码的语法问题。
    return NULL;
}
相关文章
|
2月前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
68 1
|
2月前
|
存储 算法 搜索推荐
【趣学C语言和数据结构100例】91-95
本文涵盖多个经典算法问题的C语言实现,包括堆排序、归并排序、从长整型变量中提取偶数位数、工人信息排序及无向图是否为树的判断。通过这些问题,读者可以深入了解排序算法、数据处理方法和图论基础知识,提升编程能力和算法理解。
69 4
|
2月前
|
存储 机器学习/深度学习 搜索推荐
【趣学C语言和数据结构100例】86-90
本文介绍并用C语言实现了五种经典排序算法:直接插入排序、折半插入排序、冒泡排序、快速排序和简单选择排序。每种算法都有其特点和适用场景,如直接插入排序适合小规模或基本有序的数据,快速排序则适用于大规模数据集,具有较高的效率。通过学习这些算法,读者可以加深对数据结构和算法设计的理解,提升解决实际问题的能力。
55 4
|
2月前
|
存储 算法 数据处理
【趣学C语言和数据结构100例】81-85
本文介绍了五个经典算法问题及其C语言实现,涵盖图论与树结构的基础知识。包括使用BFS求解单源最短路径、统计有向图中入度或出度为0的点数、统计无向无权图各顶点的度、折半查找及二叉排序树的查找。这些算法不仅理论意义重大,且在实际应用中极为广泛,有助于提升编程能力和数据结构理解。
57 4
|
2月前
|
算法 数据可视化 数据建模
【趣学C语言和数据结构100例】76-80
本文介绍了五种图论算法的C语言实现,涵盖二叉树的层次遍历及广度优先搜索(BFS)和深度优先搜索(DFS)的邻接表与邻接矩阵实现。层次遍历使用队列按层访问二叉树节点;BFS利用队列从源节点逐层遍历图节点,适用于最短路径等问题;DFS通过递归或栈深入图的分支,适合拓扑排序等场景。这些算法是数据结构和算法学习的基础,对提升编程能力和解决实际问题至关重要。
61 4
|
2月前
|
存储 算法 vr&ar
【趣学C语言和数据结构100例】71-75
本文介绍了五个C语言数据结构问题及其实现,涵盖链表与二叉树操作,包括按奇偶分解链表、交换二叉树左右子树、查找节点的双亲节点、计算二叉树深度及求最大关键值。通过递归和遍历等方法,解决了理论与实际应用中的常见问题,有助于提升编程能力和数据结构理解。
51 4
|
2月前
|
存储 算法 C语言
【趣学C语言和数据结构100例】66-70
本书《趣学C语言和数据结构100例》精选了5个典型的数据结构问题及C语言实现,涵盖链表与数组操作,如有序集合的集合运算、有序序列表的合并、数组中两顺序表位置互换、三递增序列公共元素查找及奇偶数重排。通过详细解析与代码示例,帮助读者深入理解数据结构与算法设计的核心思想,提升编程技能。
40 4
|
1月前
|
存储 算法 C语言
【C语言】深入浅出:C语言链表的全面解析
链表是一种重要的基础数据结构,适用于频繁的插入和删除操作。通过本篇详细讲解了单链表、双向链表和循环链表的概念和实现,以及各类常用操作的示例代码。掌握链表的使用对于理解更复杂的数据结构和算法具有重要意义。
665 6
|
2月前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
87 5
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
82 1