Spring Cloud Hystrix 断路器

简介: 在微服务架构中,我们将系统拆分成了若干弱小的单元,单元与单元之间通过HTTP或者TCP等方式相互访问,各单元的应用间通过服务注册与订阅的方式相互依赖。由于每个单元都在不同的进程中运行,依赖远程调用的方式执行,这样就可能引起因为网速变慢或者网络故障导致请求变慢或超时,若此时调用方的请求在不断增加,最后就会因等待出现故障的依赖方响应形成任务积压,最终导致自身服务的瘫痪。

Spring Cloud Hystrix 服务容错保护一、Hystrix 是什么 雪崩效应 雪崩效应产生场景 常见解决方案二、Hystrix断路器搭建三、断路器优化

一、Hystrix 是什么

在微服务架构中,我们将系统拆分成了若干弱小的单元,单元与单元之间通过HTTP或者TCP等方式相互访问,各单元的应用间通过服务注册与订阅的方式相互依赖。由于每个单元都在不同的进程中运行,依赖远程调用的方式执行,这样就可能引起因为网速变慢或者网络故障导致请求变慢或超时,若此时调用方的请求在不断增加,最后就会因等待出现故障的依赖方响应形成任务积压,最终导致自身服务的瘫痪。

Hystrix 是Netflix 中的一个组件库,它隔离了服务之间的访问点,阻止了故障节点之间可能会引起的雪崩效应,并提供了后备选项。

在微服务架构中,存在着许多的服务单元,若单一节点的故障,就很容易因为依赖关系而引发故障的蔓延,最终导致整个生态系统的瘫痪。为了解决这样的问题,产生了断路器等一系列的保护机制措施。

分布式架构中,断路器模式的作用也是类似的,当某个服务单元发生故障(类似用电器发生短路)之后,通过断路器的故障监控(类似熔断保险丝),向调用方返回一个错误响应,而不是长时间的等待。这样就不会使得线程因调用故障服务被长时间占用不释放,避免了故障在分布式系统中的蔓延。

雪崩效应

雪崩效应就像是水滴石穿,蝴蝶效应一样,是指微小的事物随着时间的推移,会变得越来越巨大,从而对整个环境造成影响的现象。例如:在生态系统中,某一类物种的灭绝可能对整个生态系统造成不了太大的损失,但是这类物种的灭绝可能会引发其他物种的死亡,其他物种的灭绝又会影响另外一种物种的灭亡,就像雪球越滚越大,最终会导致整个生态系统的崩溃。

21.jpg


如上图所示:A作为服务提供者,B为A的服务消费者,C和D是B的服务消费者。A不可用引起了B的不可用,并将不可用像滚雪球一样放大到C和D时,雪崩效应就形成了。

雪崩效应产生场景

  • 流量激增: 比如异常流量,用户重试导致系统负载升高;

  • 缓存刷新: 假设A为client端,B为Server端,假设A系统请求都流向B系统,请求超出了B系统的承载能力,就会造成B系统崩溃
  • 连接未释放: 代码循环调用的逻辑问题,资源未释放引起的内存泄漏等问题;
  • 硬件故障: 比如宕机,机房断电等
  • 线程同步等待: 系统间经常采用同步服务调用模式,核心服务和非核心服务共用一个线程池和消息队列。如果一个核心业务线程调用非核心业务线程,这个非核心线程交由第三方系统完成,当第三方系统本身出现问题,导致核心线程阻塞,一直处于等待状态,而进程间的调用是有超时限制的,最终这条线程将断掉,也可能引发雪崩;

常见解决方案

针对上述的雪崩问题,每一条都有一个自己的解决方案,但是任何一个解决方案能够应对所有场景

  • 针对流量激增,采用自动扩容以应对流量激增,或者在负载均衡器上安装限流模块
  • 针对缓存刷新,参考Cache应用的服务过载案例研究
  • 针对硬件故障,采用多机房灾备,跨机房路由
  • 针对同步等待,采用线程隔离,熔断器等机制
    通过实践发现,线程同步等待是最常见引发的雪崩效应的场景。

二、Hystrix断路器搭建

在开始使用Spring Cloud Hystrix断路器之前,我们先用之前实现的一些内容作为基础,构建一个如下图所示的服务调用关系:

22.jpg


如图所示,上面需要的角色有三个,服务有四个

  • ribbon-connsumer: ribbon消费者,消费server-provider提供的服务
  • server-provider: 服务提供者,提供服务供消费者消费(有点像父母默默的付出一样),启动两个实例,还记得怎么启动吗?—server.port 启动
  • eureka-server: eureka注册中心,提供最基本的订阅发布功能。消费者和服务提供者都需要往注册中心注册自己

依次启动上面的四个服务,发现注册中心已经成功注册了四个服务(包括自己)

23.jpg


  • 调用http://localhost:9000/ribbon-consumer 发现能够通过Ribbon进行远端调用


  • 在未加入断路器之前,关闭ribbon-consumer 的连接,再次调用http://localhost:9000/ribbon-consumer,发现服务无法提供(使用Postman 测试)

24.jpg

下面开始引入Hystrix

  • 在ribbon-consumer 工程的pom.xml的dependency节点下引入spring-cloud-starter-hystrix依赖
  • 在ribbon-consumer 工程的主加载类中添加@EnableCircuitBreaker开启断路器的功能

注意:这里也可以使用@SpringCloudApplication注解来修饰应用主类,具体定义如下

@Target(ElementType.TYPE)
  @Retention(RetentionPolicy.RUNTIME)
  @Documented
  @Inherited
  @SpringBootApplication
  @EnableDiscoveryClient
  @EnableCircuitBreaker
  public @interface SpringCloudApplication {}

SpringCloudApplication 注解上有@EnableCircuitBreaker 注解,用来开启断路器的功能,其他主要注解是@SpringBootApplication ,这个注解是SpringBoot的启动类注解, @EnableDiscoveryClient该注解可以发现Eureka注册中心

  • 改造消费方式,新增HystrixService类,并且注入RestTemplate实例,然后,将在RibbonController中对RestTemplate 的使用迁移到hystrixService方法中,最后,在hystrixService上添加@HystrixCommand注解来指定回掉方法。


// HystrixService

@Service
public class HystrixService {
@Resource
RestTemplate restTemplate;
// 指定回掉方法是下面的hystrixCallback
@HystrixCommand(fallbackMethod = "hystrixCallBack")
public String hystrixService(){
return restTemplate.getForEntity("http://server-provider/hystrix";,String.class).getBody();
}
public String hystrixCallBack(){
return "error";
}
}


  • 服务提供者的业务非常简单,具体代码如下



@RequestMapping(value = "/hystrix", method = RequestMethod.GET)
public String hystrix(){
return "hystrix";
}


  • 下面来验证一下通过断路器的回掉实现,重启之前关闭的8081端口,恢复成为四个服务的状态,并确保http://localhost:9000/ribbon-consumer/ 能够提供服务,并且以轮询的方式循环访问8081 和 8082 端口的服务。此时断开8081端口,发现页面上展示的不再是 hystrix ,而是"error",而另一个服务是正常能够打印。

三、断路器优化

经过以上服务的搭建,相信你已经能够搭建出来最基本的Hystrix熔断器,并且实现了服务熔断机制,下面就来对断路器做一下简单的优化,来模拟服务阻塞(长时间未响应)的情况。

优化server-provider代码如下:

@RequestMapping(value = "/hystrix", method = RequestMethod.GET)
public String hystrix() throws InterruptedException {
ServiceInstance serviceInstance = discoveryClient.getLocalServiceInstance();
// 让线程等待几秒钟
int sleepTime = new Random().nextInt(3000);
Thread.sleep(sleepTime);
System.out.println("weak up!!!");
log.info("sleepTime = " + sleepTime);
return "hystrix";
}

依次启动所有的服务,在主页上访问 http://localhost:9000/ribbon-consumer ,多次刷新主页,发现error 和 hystrix 是交替出现的,这是为何?

因为hystrix断路器的默认超时时间是2000毫秒,所以这里采用了0 - 3000 的随机数,也就是访问请求在 0 -2000 毫秒内是不超时的,不会触发断路器,而> 2000 毫秒是超市的,默认会触发断路器。

            </div>
目录
相关文章
|
9月前
|
人工智能 监控 算法
销售易CRM:功能与优势全解析
销售易CRM是国内领先的客户关系管理(CRM)系统,提供强大的销售管理、全方位客户管理、丰富的营销自动化工具、智能AI赋能及灵活的开放性平台。其功能涵盖线索获取、商机管理、客户画像、营销活动策划、智能预测等,支持企业高效管理客户、优化业务流程、提升销售效率和客户满意度。通过灵活的二次开发和API接口,销售易CRM可无缝集成企业现有系统,助力企业在数字化转型中实现业绩高质量增长。
可图IP-adapter-plus开源,魔搭送你一本中文咒语书
快手可图团队基于Kolors-Basemodel 提供 IP-Adapter-Plus 权重和推理代码,魔搭社区新鲜出炉最佳实践,结合中文咒语书,给你喜欢的IP定制风格吧!
可图IP-adapter-plus开源,魔搭送你一本中文咒语书
|
9月前
|
人工智能 自然语言处理 算法
《DeepSeek-V3:动态温度调节算法,开启推理新境界!》
DeepSeek-V3凭借其创新的动态温度调节算法,成为人工智能领域的焦点。该算法通过灵活调整模型输出的随机性(温度),在不同情境下实现推理速度与精度的动态平衡。低温使模型输出稳定准确,适合事实性任务;高温则激发多样性,适用于创意创作。DeepSeek-V3能根据对话进展、任务类型等实时优化温度,提升多轮对话的质量和效率,显著改善智能客服和内容创作的应用体验。这一技术突破为大语言模型的发展注入了新活力,展现了强大的适应性和竞争力。
517 17
|
编解码 人工智能 自然语言处理
Ruyi:图森未来推出的图生视频大模型,支持多分辨率、多时长视频生成,具备运动幅度和镜头控制等功能
Ruyi是图森未来推出的图生视频大模型,专为消费级显卡设计,支持多分辨率、多时长视频生成,具备首帧、首尾帧控制、运动幅度控制和镜头控制等特性。Ruyi基于DiT架构,能够降低动漫和游戏内容的开发周期和成本,是ACG爱好者和创作者的理想工具。
796 33
Ruyi:图森未来推出的图生视频大模型,支持多分辨率、多时长视频生成,具备运动幅度和镜头控制等功能
|
10月前
|
JSON 监控 API
唯品会商品详情接口(唯品会 API 系列)
唯品会商品详情接口助力电商发展,提供商品名称、价格、规格等详细信息,支持HTTP GET/POST请求,响应为JSON格式。开发者可通过API Key和商品ID获取数据,应用于电商数据分析、竞品调研、应用开发及价格监控,提升业务效率与竞争力。示例代码展示Python调用方法,方便快捷。
|
机器学习/深度学习 人工智能 供应链
深度学习在图像识别中的应用及案例分析
【10月更文挑战第40天】本文将探讨深度学习在图像识别领域的应用,通过分析其基本原理、关键技术和实际应用案例,揭示深度学习如何革新了图像处理技术。文章不仅提供理论框架,还深入讨论了深度学习模型如卷积神经网络(CNN)的构建和训练过程,以及这些技术如何在自动驾驶汽车、医疗诊断等多个领域得到实际应用。通过具体案例,我们将看到深度学习如何使机器视觉更加精准和高效。
866 1
|
IDE 开发工具 开发者
Kotlin语法 - 函数与Lambda表达式
本教程详细讲解了Kotlin中的函数与Lambda表达式,包括函数的基本定义、默认返回值类型、匿名函数、Lambda表达式的定义及简化、Lambda与函数引用的结合使用,以及如何在Lambda中实现循环控制。适合希望深入了解Kotlin语法的开发者。
156 1
WK
|
测试技术 开发者 Python
python模块化设计
Python的模块化设计支持开发者将代码拆分成独立模块,提升代码的可读性、可维护性和复用性。通过`.py`文件定义模块,并利用`import`语句导入所需功能,同时可通过包含`__init__.py`的目录创建包以组织多个模块。Python按特定顺序搜索模块,支持修改`sys.path`添加自定义路径。此外,支持相对与绝对导入方式,便于灵活使用模块资源。遵循良好的编程习惯有助于开发高质量的可复用模块,而虚拟环境与依赖管理工具则确保项目间的依赖隔离,进一步增强项目的稳定性和可扩展性。
WK
296 2
|
缓存 人工智能
字节跳动、浙大推出Coin3D:用几何代理,控制3D模型生成
【7月更文挑战第29天】字节跳动与浙江大学合作开发了Coin3D框架,利用几何代理实现3D模型生成的精确控制与交互。该框架通过3D适配器、代理限制编辑策略、渐进式体积缓存及体积-SDS等技术,支持用户实时调整3D模型的全局与局部特征。实验表明,Coin3D在保证高质量的同时,显著提升了生成过程的灵活性与可控性。[论文](https://arxiv.org/abs/2405.08054)
448 5
|
Python
接上python如何处理下载中断的情况
实现断点续传机制涉及记录已下载的字节数、使用`Range`头继续下载及合并文件块。Python示例代码展示了如何通过`requests`库从上次中断的位置开始下载,将新内容追加到现有文件。函数`resume_download(url, filename, last_byte=0)`接收URL、文件名和最后字节位置作为参数。注意,实际使用时需确保URL和文件路径有效。
471 0