双向联想记忆神经网络| 学习笔记

简介: 快速学习双向联想记忆神经网络。

开发者学堂课程【机器学习算法 :双向联想记忆神经网络】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/535/detail/7259


双向联想记忆神经网络

 

内容介绍

一、双向联想记忆神经网络

二、BAM 网络的特点

 

一、双向联想记忆神经网络

1. 双向联想记忆网络( Bidirectional Associative Memory , BAM ):

由 Bart Ko sko 在1988年提出,可实现双向联想。 BAM 网有离散型、连续型、自适应型等多种形式。

image.png

双层双向网络

■信息可以双向传播 Bart Kosko

■状态输出为单极性二进制{1,0},或者双

W WT 极性离散值{1,-1}

■不同方向的输入,使用的权重矩阵互为

转置 W 和 WT

2. BAM 网络运行过程

双向联想记忆网络( Bidirectional Associative Memory , BAM ):由 Bart Kosko 在1988年提出,可实现双向联想。 BAM 网有离散型、连续型、自适应型等多种形式。

image.png

image.png

 

二、BAM 网络的特点

 网络设计比较简单

(一)只需要几组输入和几组典型输出

(二)权值由输入输出简单计算得到

运行时由实际输出与权向量矩阵做内积计算得到相应的输出

 大规模并行处理,可以处理较大的数据量

 实时性和容错性较好

 无需对输入向量进行预处理,可直接输入,不需要编码和解码

相关文章
|
6月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
|
3月前
|
机器学习/深度学习 数据采集 资源调度
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
基于长短期记忆网络定向改进预测的动态多目标进化算法(LSTM-DIP-DMOEA)求解CEC2018(DF1-DF14)研究(Matlab代码实现)
109 0
|
6月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
6月前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于Matlab 2022a/2024b实现,结合灰狼优化(GWO)算法与双向长短期记忆网络(BiLSTM),用于序列预测任务。核心代码包含数据预处理、种群初始化、适应度计算及参数优化等步骤,完整版附带中文注释与操作视频。BiLSTM通过前向与后向处理捕捉序列上下文信息,GWO优化其参数以提升预测性能。效果图展示训练过程与预测结果,适用于气象、交通等领域。LSTM结构含输入门、遗忘门与输出门,解决传统RNN梯度问题,而BiLSTM进一步增强上下文理解能力。
|
Ubuntu 网络安全 图形学
Ubuntu学习笔记(二):ubuntu20.04解决右上角网络图标激活失败或者消失,无法连接有线问题。
在Ubuntu 20.04系统中解决网络图标消失和无法连接有线网络问题的方法,其中第三种方法通过检查并确保Windows防火墙中相关服务开启后成功恢复了网络连接。
4616 0
Ubuntu学习笔记(二):ubuntu20.04解决右上角网络图标激活失败或者消失,无法连接有线问题。
|
存储 算法 网络虚拟化
【计算机网络】学习笔记,第三篇:数据链路层
现在的光纤宽带接入 FTTx 都要使用 PPPoE 的方式进行接入。在 PPPoE 弹出的窗口中键入在网络运营商购买的用户名和密码,就可以进行宽带上网了 利用 ADSL 进行宽带上网时,从用户个人电脑到家中的 ADSL 调制解调器之间,也是使用 RJ-45 和 5 类线(即以太网使用的网线)进行连接的,并且也是使用 PPPoE 弹出的窗口进行拨号连接的
478 5
|
机器学习/深度学习 存储 自然语言处理
程序与技术分享:DeepMemoryNetwork深度记忆网络
程序与技术分享:DeepMemoryNetwork深度记忆网络
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
1255 4
|
机器学习/深度学习 数据可视化 Linux
Seaborn可视化学习笔记(一):可视化神经网络权重分布情况
这篇文章是关于如何使用Seaborn库来可视化神经网络权重分布的教程,包括函数信息、测试代码和实际应用示例。
347 0

热门文章

最新文章