微服务架构实践之邮件通知系统改造

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介:

拆分背景

随着平台业务增长,功能耦合度越来越高,部署周期变长,代码样式混乱、新人入手复杂、独立功能影响系统的稳定性等等,等等,等等问题。

以邮件通知为案例对服务进行拆分,独立服务,独立部署,独立进程,做到及时上线而不影响平台正常运营。

以此为例,望大家对于经手的功能模块,有一个良好的规划,不要碍于项目进度而给自己或者别人制造麻烦。

拆分原因

  • 邮件通知分散于各个系统,配置变更容易遗漏
  • 代码分散,功能修复麻烦,相应的增加部署难度
  • 多人经手,代码风格不同,不易于维护
  • 发送模版不规范,导致发送风格迥异
  • 线上生产环境出现问题,在不影响正常运行的情况下,不易于修复
  • 功能集成在项目,增加了调试的难度
  • 影响平台稳定性

拆分优势

系统拆分虽然会增加了复杂性,但是可以得到更多的好处

  • 数据闭环实现自我管,不依赖于任何系统,即去依赖化这样的好处是别人抖动不会影响到自己
  • 数据异构,即将各个系统的数据传输过来,按照自己的要求去处理
  • 基于Maven管理项目,相比于项目中的Ant构建更高级,当然功能不仅仅是构建,还有一些列的优势
  • SpringMvc+Dubbo实现服务治理,对外开放接口,也可以自定义实现HTTP请求
  • 基于Thymeleaf模版,实现邮件动态内容模板话,良好的封装,便于开发和查阅
  • 初次采用Log4j2 ,睁大眼睛是二,没错,对比log4j和logbak性能大幅度提升
  • 独立服务,独立部署,独立进程,更加灵活易部署,易扩展
  • 使用LinkedBlockingQueue安全队列做任务队列(咱不考虑)
  • 额外增加Redis是为了在大量邮件发送请求下缓解邮件发送服务器压力(咱不考虑)

技术实现

Maven、SpringMvc、Dubbo、Redis、Thymeleaf、Log4j2、MQ

技术问题

如何快速入门Maven
如何轻松搭建一个Maven项目框架
对于在Maven库中不存在的Jar该如何处理
如何搭建SpringMvc基础配置
关于Log4j2的正确使用
模版Thymeleaf如何生成静态文件
任务队列LinkedBlockingQueue实现
redis使用场景
MQ使用场景

架构图例

关于Maven

234.png

关于流程

email.png

小站:https://blog.52itstyle.com/archives/1012/

目录
相关文章
|
27天前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
146 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
1月前
|
运维 监控 持续交付
微服务架构解析:跨越传统架构的技术革命
微服务架构(Microservices Architecture)是一种软件架构风格,它将一个大型的单体应用拆分为多个小而独立的服务,每个服务都可以独立开发、部署和扩展。
208 36
微服务架构解析:跨越传统架构的技术革命
|
20天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
58 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
6天前
|
负载均衡 Serverless 持续交付
云端问道9期实践教学-省心省钱的云上Serverless高可用架构
详细介绍了云上Serverless高可用架构的一键部署流程
30 10
|
20天前
|
弹性计算 Java 关系型数据库
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
Web应用上云经典架构实践教学
|
6天前
|
存储 人工智能 运维
面向AI的服务器计算软硬件架构实践和创新
阿里云在新一代通用计算服务器设计中,针对处理器核心数迅速增长(2024年超100核)、超多核心带来的业务和硬件挑战、网络IO与CPU性能增速不匹配、服务器物理机型复杂等问题,推出了磐久F系列通用计算服务器。该系列服务器采用单路设计减少爆炸半径,优化散热支持600瓦TDP,并实现CIPU节点比例灵活配比及部件模块化可插拔设计,提升运维效率和客户响应速度。此外,还介绍了面向AI的服务器架构挑战与软硬件结合创新,包括内存墙问题、板级工程能力挑战以及AI Infra 2.0服务器的开放架构特点。最后,探讨了大模型高效推理中的显存优化和量化压缩技术,旨在降低部署成本并提高系统效率。
|
8天前
|
运维 监控 安全
天财商龙:云上卓越架构治理实践
天财商龙成立于1998年,专注于为餐饮企业提供信息化解决方案,涵盖点餐、收银、供应链和会员系统等。自2013年起逐步实现业务上云,与阿里云合作至今已十年。通过采用阿里云的WA体系,公司在账号管理、安全保障、监控体系和成本管控等方面进行了全面优化,提升了业务稳定性与安全性,并实现了显著的成本节约。未来,公司将持续探索智能化和全球化发展,进一步提升餐饮行业的数字化水平。
|
1月前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】Kernel 层架构
推理引擎的Kernel层负责执行底层数学运算,如矩阵乘法、卷积等,直接影响推理速度与效率。它与Runtime层紧密配合,通过算法优化、内存布局调整、汇编优化及调度优化等手段,实现高性能计算。Kernel层针对不同硬件(如CPU、GPU)进行特定优化,支持NEON、AVX、CUDA等技术,确保在多种平台上高效运行。
84 32
|
8天前
|
运维 安全 架构师
架构师工具箱:Well-Architected云治理提效实践
本次分享基于阿里云Well-Architected Framework的最佳实践案例,涵盖企业从上云到优化的全过程。安畅作为国内领先的云管理服务提供商(Cloud MSP),拥有800多名员工,其中70%为技术工程师,为企业提供架构安全、数据智能等技术服务。内容包括Landing Zone与Well-Architected的关系、企业云治理现状及需求分析,重点探讨了安全合规、成本优化、资源稳定性和效率提升等方面的最佳实践,并通过具体客户案例展示了如何通过自动化工具和定制化解决方案帮助企业提升云上业务价值。
|
1月前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
57 4
【AI系统】计算图优化架构