FAQ系列 | B+树索引和哈希索引的区别

简介: FAQ系列 | B+树索引和哈希索引的区别

导读

在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议。

二者区别

备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BTREE,例如像下面这样的写法:

CREATE TABLE t(

aid int unsigned not null auto_increment,

userid int unsigned not null default 0,

username varchar(20) not null default ‘’,

detail varchar(255) not null default ‘’,

primary key(aid),

unique key(uid) USING BTREE,

key (username(12)) USING BTREE此处 uname 列只创建了最左12个字符长度的部分索引

)engine=InnoDB;

一个经典的B+树索引数据结构见下图:

image.png

(图片源自网络)

B+树是一个平衡的多叉树,从根节点到每个叶子节点的高度差值不超过1,而且同层级的节点间有指针相互链接。

在B+树上的常规检索,从根节点到叶子节点的搜索效率基本相当,不会出现大幅波动,而且基于索引的顺序扫描时,也可以利用双向指针快速左右移动,效率非常高。

因此,B+树索引被广泛应用于数据库、文件系统等场景。顺便说一下,xfs文件系统比ext3/ext4效率高很多的原因之一就是,它的文件及目录索引结构全部采用B+树索引,而ext3/ext4的文件目录结构则采用Linked list, hashed B-tree、Extents/Bitmap等索引数据结构,因此在高I/O压力下,其IOPS能力不如xfs。


详细可参见:

https://en.wikipedia.org/wiki/Ext4
https://en.wikipedia.org/wiki/XFS


哈希索引的示意图则是这样的:

image.png

(图片源自网络)

简单地说,哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。

从上面的图来看,B+树索引和哈希索引的明显区别是:

  • 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;
  • 从示意图中也能看到,如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;
  • 同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);
  • 哈希索引也不支持多列联合索引的最左匹配规则
  • B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题

后记

在MySQL中,只有HEAP/MEMORY引擎表才能显式支持哈希索引(NDB也支持,但这个不常用),InnoDB引擎的自适应哈希索引(adaptive hash index)不在此列,因为这不是创建索引时可指定的。

还需要注意到:HEAP/MEMORY引擎表在mysql实例重启后,数据会丢失。

通常,B+树索引结构适用于绝大多数场景,像下面这种场景用哈希索引才更有优势:

在HEAP表中,如果存储的数据重复度很低(也就是说基数很大),对该列数据以等值查询为主,没有范围查询、没有排序的时候,特别适合采用哈希索引

例如这种SQL:

SELECT … FROM t WHERE C1 = ?; — 仅等值查询

在大多数场景下,都会有范围查询、排序、分组等查询特征,用B+树索引就可以了。

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
存储 缓存 JavaScript
缓存组件状态,提升用户体验:探索 keep-alive 的神奇世界
缓存组件状态,提升用户体验:探索 keep-alive 的神奇世界
缓存组件状态,提升用户体验:探索 keep-alive 的神奇世界
|
安全 Java 数据处理
Python网络编程基础(Socket编程)多线程/多进程服务器编程
【4月更文挑战第11天】在网络编程中,随着客户端数量的增加,服务器的处理能力成为了一个重要的考量因素。为了处理多个客户端的并发请求,我们通常需要采用多线程或多进程的方式。在本章中,我们将探讨多线程/多进程服务器编程的概念,并通过一个多线程服务器的示例来演示其实现。
|
Java Linux 程序员
【Linux系列】离线安装openjdk17的rpm包
【Linux系列】离线安装openjdk17的rpm包
|
12月前
|
传感器 机器学习/深度学习 人工智能
《智领新材制造:人工智能点亮新材料良品率提升之路》
在新材料生产中,人工智能通过精准监测、故障预警、智能优化工艺参数、智能化质量检测及预测性维护,全方位提升生产良品率。它结合传感器实时数据,快速识别异常并优化参数,确保产品质量一致性。机器视觉和无损检测技术提高缺陷识别精度,预测性维护保障设备稳定运行。尽管面临挑战,AI正重塑新材料生产模式,助力产业高质量发展。
235 4
|
负载均衡 应用服务中间件 持续交付
微服务架构下的Web服务器部署
【8月更文第28天】随着互联网应用的不断发展,传统的单体应用架构逐渐显露出其局限性,特别是在可扩展性和维护性方面。为了解决这些问题,微服务架构应运而生。微服务架构通过将应用程序分解成一系列小型、独立的服务来提高系统的灵活性和可维护性。本文将探讨如何在微服务架构中有效部署和管理Web服务器实例,并提供一些实际的代码示例。
611 0
|
12月前
|
存储 分布式计算 资源调度
如何8步完成hadoop单机安装
本文介绍了在Ubuntu 20.04上安装和配置Hadoop 3.3.6的详细步骤。首先更新系统并安装Java环境,接着下载、解压Hadoop并配置环境变量。然后编辑核心配置文件`core-site.xml`和`hdfs-site.xml`,格式化HDFS文件系统,并启动Hadoop服务。最后通过`jps`命令和浏览器访问Web界面验证安装是否成功。Hadoop是一个开源框架,用于分布式存储和处理大规模数据集,其核心组件包括HDFS、MapReduce和YARN。
612 6
|
安全 Java API
ELK运维文档
ELK运维文档
243 2
|
SQL 数据采集 数据挖掘
Pandas DataFrame 基本操作实例100个
Pandas DataFrame 基本操作实例100个
673 1
|
前端开发
element-ui组件DatePicker日期选择器移动端兼容
element-ui组件DatePicker日期选择器移动端兼容
element-ui组件DatePicker日期选择器移动端兼容
|
网络协议 安全 网络安全
快来了解如何使用frp配置实验室服务器来内卷吧~
导师之前新购了3090N卡的服务器,然而只能内网访问,一开始大家使用向日葵软件远程连接,但这有个弊端,这样的桌面只能一个人使用,效率极低。 为了能够让服务器更好地造福于人,我发现了frp的存在,正巧自己还有一台到25年才过期的腾讯云轻量服务器,于是就开始桥接的工作。
425 0