通过学习曲线识别过拟合和欠拟合
本文介绍了如何利用学习曲线识别机器学习模型中的过拟合和欠拟合问题。过拟合发生时,模型过于复杂,对训练数据过拟合,导致测试集表现不佳;欠拟合则是因为模型太简单,无法捕获数据模式,训练和测试集得分均低。学习曲线通过绘制训练和验证损失随训练样本增加的情况来辅助判断。对于过拟合,学习曲线显示训练损失低且随样本增加上升,验证损失降低但不趋近训练损失;欠拟合时,训练和验证损失都高,且两者随着样本增加缓慢改善。通过学习曲线,我们可以调整模型复杂度或采用正则化等方法优化模型泛化能力。