SQL调优指南—智能索引推荐

简介: 索引优化通常需要依赖运维或开发人员对数据库引擎内部优化和执行原理的深入理解。为优化体验和降低操作门槛,PolarDB-X推出了基于代价优化器的索引推荐功能,可根据查询语句分析并推荐索引,帮助您降低查询耗时,提升数据库性能。

注意事项

索引推荐功能仅针对您当前指定的SQL查询语句进行分析与推荐。在根据推荐的信息创建索引前,您需要评估创建该索引对其它查询的影响。

环境说明

TPC-H是业界常用的基准测试方法,由TPC委员会制定发布,用于评测数据库的分析型查询能力。TPC-H基准测试方法包含8张数据表、22条复杂的SQL查询(即Q1~Q22)。下图为执行TPC-H中的Q17(小订单收入查询)的返回信息,可查看到执行该查询语句消耗的时间为28.76秒。本文将通过智能索引推荐功能,优化该查询语句的执行效率。

  1. 查询智能索引推荐信息如需查询某个查询语句的智能索引推荐信息,您只需在该查询语句前增加EXPLAIN ADVISOR命令,示例如下:
EXPLAIN ADVISOR
SELECT sum(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem,
     part
WHERE p_partkey = l_partkey
  AND p_brand = 'Brand#23'
  AND p_container = 'MED BOX'
  AND l_quantity <
    (SELECT 0.2 * avg(`l_quantity`)
     FROM lineitem
     WHERE l_partkey = p_partkey);
  1. 执行上述命令后,PolarDB-X将返回推荐的索引创建语句、添加索引前后的代价等信息,详细的返回信息及其注释如下所示:说明
    • 本案例中,预计磁盘I/O提升百分比为3024.7%,表明使用推荐的索引将带来较大的收益。
    • 当PolarDB-X无法推荐索引时,返回信息中会建议您在业务低峰期,对目标表执行Analyze Table命令刷新统计信息(该操作会消耗较大的I/O资源)。当统计信息更新后,再次执行索引推荐可获得更准确的索引。SQL复制代码。
IMPROVE_VALUE: 2465.3%        # 预计综合代价提升百分比

IMPROVE_CPU: 59377.4% # 预计CPU提升百分比
IMPROVE_MEM: 0.4% # 预计内存提升百分比
IMPROVE_IO: 3024.7% # 预计磁盘I/O提升百分比
IMPROVE_NET: 2011.1% # 预计网络传输提升百分比
BEFORE_VALUE: 4.711359845E8 # 添加索引前综合代价值
BEFORE_CPU: 1.19405577E7 # 添加索引前CPU估算值
BEFORE_MEM: 426811.2 # 添加索引前内存消耗估算值
BEFORE_IO: 44339 # 添加索引前磁盘I/O估算值
BEFORE_NET: 47.5 # 添加索引前网络传输估算值
AFTER_VALUE: 1.83655008E7 # 添加索引后综合代价值
AFTER_CPU: 20075.8 # 添加索引后CPU估算值
AFTER_MEM: 425016 # 添加索引后内存消耗估算值
AFTER_IO: 1419 # 添加索引后磁盘I/O估算值
AFTER_NET: 2.2 # 添加索引后网络传输估算值
ADVISE_INDEX: ALTER TABLE `lineitem` ADD INDEX `__advise_index_lineiteml_partkey`(`l_partkey`);
/ ADVISE_INDEX中的内容为推荐的索引创建语句 /
NEW_PLAN: # 添加索引后预计执行计划
Project(avg_yearly="$f0 / ?0")
HashAgg($f0="SUM(l_extendedprice)")
Filter(condition="l_quantity < $16 * f17w0$o0")
SortWindow(p_partkey="p_partkey", l_partkey="l_partkey", l_quantity="l_quantity", l_extendedprice="l_extendedprice", $16&#61;&#34;$16", f5w0$o0&#61;&#34;window#0AVG($2)", Reference Windows="window#0=window(partition {1} order by [] range between UNBOUNDED PRECEDING and UNBOUNDED PRECEDING aggs [AVG($2)])")
MemSort(sort="l_partkey ASC")
BKAJoin(condition="l_partkey = p_partkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="[0000,0001].part", shardCount=2, sql="SELECT `p_partkey` FROM `part` AS `part` WHERE ((`p_brand` = ?) AND (`p_container` = ?))")
Gather(concurrent=true)
LogicalView(tables="[0000,0001].lineitem", shardCount=2, sql="SELECT `l_partkey`, `l_quantity`, `l_extendedprice`, ? AS `$16` FROM `lineitem` AS `lineitem` WHERE (`l_partkey` IN (...))")
INFO: LOCAL_INDEX # 其它信息
  1. 根据推荐信息创建索引
    1. 评估创建该索引带来的收益,然后根据返回结果ADVISE_INDEX中的SQL语句创建索引。
ALTER TABLE `lineitem` ADD  INDEX `__advise_index_lineiteml_partkey`(`l_partkey`);
    1. 再次执行TPC-H中的Q17(小订单收入查询),耗时减少至1.41秒,查询效率得到大幅提升。44.png
相关文章
|
2天前
|
数据采集 人工智能 安全
|
11天前
|
云安全 监控 安全
|
3天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
1022 151
|
3天前
|
编解码 人工智能 机器人
通义万相2.6,模型使用指南
智能分镜 | 多镜头叙事 | 支持15秒视频生成 | 高品质声音生成 | 多人稳定对话
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1720 9
|
8天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
660 152
|
10天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
626 14
|
5天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
385 4