【数据结构与算法】第八章:栈与队列相关应用

简介: 前面几章纤细介绍了栈与队列的基本内容及相关操作,本章将通过三个案例对栈与队列作进一步的分析,然后分别利用栈和队列的基本操作给出案例中相关算法的具体实现。

 📖【数据结构与算法】第八章:栈与队列相关应用


📝1️⃣数制的转换。

【案例描述】

       十进制数N和其他d进制数的转换是计算机实现计算的基本问题,其解决方法很多,其中一个简单算法基于下列原理:

       N = (N div d) × d + N mod d(其中,div为整除运算,mod为求余运算)

假设现要编制一个满足下列要求的程序:

    • 对于输入的任意一个非负十进制整数,输出与其等值的八进制数。

           上述计算过程是从低位到高位顺序产生八进制数的各个数位;而输出过程应从高位到低位进行,恰好和计算过程相反,因而我们可以使用栈来解决这个问题。在计算过程中依次将得到的余数压入栈中,计算完毕后,再依次弹出栈中的余数就是数制转换的结果。

    【案例分析】以十进制转化为八进制为例

           当将一个十进制整数N转换为八进制数时,在计算过程中,把N与8求余得到的八进制数的各位依次进栈,计算完毕后将栈中 的八进制数依次出栈输出,输出结果就是待求得的八进制数。

    【算法步骤】

    ① 初始化一个空栈S。

    ② 当十进制数N非零时,循环执行以下操作:

      • 把N与8求余得到的八进制数压入栈S;
      • N更新为N与8的商。

      ③ 当栈S非空时,循环执行以下操作:

        • 弹出栈顶元素e;
        • 输出e。

        【算法描述】

        void conversion(int N)
        {
            //对于任意一个非负十进制数,打印输出与其等值的八进制数
            InitStack(S); //初始化空栈S
            while(N) //当N非零时,循环
            {
                Push(S,N%8); //把N与8求余得到的八进制数压入栈S
                N=N/8; //N更新为N与8的商
            }
            while(!StackEmpty(S)) //当栈S非空时,循环
            {
                Pop(S,e); //弹出栈顶元素e
                cout<<e; //输出e
            }
        }

        image.gif

        📝2️⃣括号匹配的检验。

        【案例描述】

               假设表达式中允许包含两种括号:圆括号和方括号,其嵌套的顺序随意,即([]())或[([][])]等为正确的格式,[(]或([())或(()])均为不正确的格式。检验括号是否匹配的方法可用“期待的急迫程度”这个概念来描述。

               当计算机接受了第一个括号后,它期待着与其匹配的第八个括号的出现,然而等来的却是第二个括号,显然第二个括号的期待急迫性高于第一个括号,此时第一个括号“[”只能暂时靠边,而迫切等待与第二个括号相匹配的、第七个括号“)”的出现。类似地,因等来的是第三个括号“[”,其期待匹配的程度较第二个括号更急迫,则第二个括号也只能靠边,让位于第三个括号。在接受了第四个括号之后,第三个括号的期待得到满足,消解之后,第二个括号的期待匹配就成为当前最急迫的任务了,……,依次类推。可见,这个处理过程恰与栈的特点相吻合。每读入一个括号,若是右括号,则或者使置于栈顶的最急迫的期待得以消解,或者是不合法的情况;若是左括号,则作为一个新的更急迫的期待压入栈中,自然使原有的在栈中的所有未消解的期待的急迫性都降了一级。

        【案例分析】

               检验算法借助一个栈,每当读入一个左括号,则直接入栈,等待相匹配的同类右括号;每当读入一个右括号,若与当前栈顶的左括号类型相同,则二者匹配,将栈顶的左括号出栈,直到表达式扫描完毕。

               在处理过程中,还要考虑括号不匹配出错的情况。例如,当出现(( )[ ]))这种情况时,由于前面入栈的左括号均已和后面出现的右括号相匹配,栈已空,因此最后扫描的右括号不能得到匹配;出现[([ ])这种错误,当表达式扫描结束时,栈中还有一个左括号没有匹配;出现(( )]这种错误显然是栈顶的左括号和最后的右括号不匹配。

        【算法步骤】

        ① 初始化一个空栈S。

        ② 设置一标记性变量flag,用来标记匹配结果以控制循环及返回结果,1表示正确匹配,0表示错误匹配,flag初值为1。

        ③ 扫描表达式,依次读入字符ch,如果表达式没有扫描完毕或flag非零,则循环执行以下操作:

          • 若ch是左括号“[”或“(”,则将其压入栈;
          • 若ch是右括号“)”,则根据当前栈顶元素的值分情况考虑:若栈非空且栈顶元素是“(”,则正确匹配,否则错误匹配,flag置为0;
          • 若ch是右括号“]”,则根据当前栈顶元素的值分情况考虑:若栈非空且栈顶元素是“[”,则正确匹配,否则错误匹配,flag置为0。

          ④ 退出循环后,如果栈空且flag值为1,则匹配成功,返回true,否则返回false。

          【算法描述】

          Status Matching()
          {
              //检验表达式中所含括号是否正确匹配,如果匹配,则返回true,否则返回false
              //表达式以“# 结束
              InitStack(S); //初始化空栈
              flag=1; //标记匹配结果以控制循环及返回结果
              cin>>ch; //读入第一个字符
              while(ch!='#'&&flag) //假设表达式以“#”结尾
              {
                  switch(ch)
                  {
                      case '['||'(': //若是左括号,则将其压入栈
                          Push(S,ch);
                          break;
                      case ')': //若是“)”,则根据当前栈顶元素的值分情况考虑
                          if(!StackEmpty(S)&&GetTop(S)=='(')
                              Pop(S,x); //若栈非空且栈顶元素是“(”,则正确匹配
                          else flag=0; //若栈空或栈顶元素不是“(”,则错误失败
                          break;
                      case ']': //若是“]”,则根据当前栈顶元素的值分情况考虑
                          if(!StackEmpty(S)&&GetTop(S)=='[')
                              Pop(S,x); //若栈非空且栈顶元素是“[”,则正确匹配
                          else flag=0; //若栈空或栈顶元素不是“[”,则错误匹配
                          break;
                  } //switch
                  cin>>ch; //继续读入下一个字符
              } //while
              if(StackEmpty(S)&&flag)
                  return true; //匹配成功
              else return false; //匹配失败
          }

          image.gif

          相关文章
          |
          3天前
          |
          存储 Java
          【数据结构】优先级队列(堆)从实现到应用详解
          本文介绍了优先级队列的概念及其底层数据结构——堆。优先级队列根据元素的优先级而非插入顺序进行出队操作。JDK1.8中的`PriorityQueue`使用堆实现,堆分为大根堆和小根堆。大根堆中每个节点的值都不小于其子节点的值,小根堆则相反。文章详细讲解了如何通过数组模拟实现堆,并提供了创建、插入、删除以及获取堆顶元素的具体步骤。此外,还介绍了堆排序及解决Top K问题的应用,并展示了Java中`PriorityQueue`的基本用法和注意事项。
          16 5
          【数据结构】优先级队列(堆)从实现到应用详解
          WK
          |
          2天前
          |
          机器学习/深度学习 算法 数据挖掘
          PSO算法的应用场景有哪些
          粒子群优化算法(PSO)因其实现简单、高效灵活,在众多领域广泛应用。其主要场景包括:神经网络训练、工程设计、电力系统经济调度与配电网络重构、数据挖掘中的聚类与分类、控制工程中的参数整定、机器人路径规划、图像处理、生物信息学及物流配送和交通管理等。PSO能处理复杂优化问题,快速找到全局最优解或近似解,展现出强大的应用潜力。
          WK
          12 1
          |
          9天前
          |
          存储 人工智能 C语言
          数据结构基础详解(C语言): 栈的括号匹配(实战)与栈的表达式求值&&特殊矩阵的压缩存储
          本文首先介绍了栈的应用之一——括号匹配,利用栈的特性实现左右括号的匹配检测。接着详细描述了南京理工大学的一道编程题,要求判断输入字符串中的括号是否正确匹配,并给出了完整的代码示例。此外,还探讨了栈在表达式求值中的应用,包括中缀、后缀和前缀表达式的转换与计算方法。最后,文章介绍了矩阵的压缩存储技术,涵盖对称矩阵、三角矩阵及稀疏矩阵的不同压缩存储策略,提高存储效率。
          |
          11天前
          |
          存储 C语言
          数据结构基础详解(C语言): 栈与队列的详解附完整代码
          栈是一种仅允许在一端进行插入和删除操作的线性表,常用于解决括号匹配、函数调用等问题。栈分为顺序栈和链栈,顺序栈使用数组存储,链栈基于单链表实现。栈的主要操作包括初始化、销毁、入栈、出栈等。栈的应用广泛,如表达式求值、递归等场景。栈的顺序存储结构由数组和栈顶指针构成,链栈则基于单链表的头插法实现。
          |
          11天前
          |
          存储 C语言
          数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
          本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。
          |
          11天前
          |
          机器学习/深度学习 算法 Python
          群智能算法:深入解读人工水母算法:原理、实现与应用
          近年来,受自然界生物行为启发的优化算法备受关注。人工水母算法(AJSA)模拟水母在海洋中寻找食物的行为,是一种新颖的优化技术。本文详细解读其原理及实现步骤,并提供代码示例,帮助读者理解这一算法。在多模态、非线性优化问题中,AJSA表现出色,具有广泛应用前景。
          |
          12天前
          |
          Java
          【数据结构】栈和队列的深度探索,从实现到应用详解
          本文介绍了栈和队列这两种数据结构。栈是一种后进先出(LIFO)的数据结构,元素只能从栈顶进行插入和删除。栈的基本操作包括压栈、出栈、获取栈顶元素、判断是否为空及获取栈的大小。栈可以通过数组或链表实现,并可用于将递归转化为循环。队列则是一种先进先出(FIFO)的数据结构,元素只能从队尾插入,从队首移除。队列的基本操作包括入队、出队、获取队首元素、判断是否为空及获取队列大小。队列可通过双向链表或数组实现。此外,双端队列(Deque)支持两端插入和删除元素,提供了更丰富的操作。
          14 0
          【数据结构】栈和队列的深度探索,从实现到应用详解
          |
          15天前
          |
          算法 BI Serverless
          基于鱼群算法的散热片形状优化matlab仿真
          本研究利用浴盆曲线模拟空隙外形,并通过鱼群算法(FSA)优化浴盆曲线参数,以获得最佳孔隙度值及对应的R值。FSA通过模拟鱼群的聚群、避障和觅食行为,实现高效全局搜索。具体步骤包括初始化鱼群、计算适应度值、更新位置及判断终止条件。最终确定散热片的最佳形状参数。仿真结果显示该方法能显著提高优化效率。相关代码使用MATLAB 2022a实现。
          |
          15天前
          |
          算法 数据可视化
          基于SSA奇异谱分析算法的时间序列趋势线提取matlab仿真
          奇异谱分析(SSA)是一种基于奇异值分解(SVD)和轨迹矩阵的非线性、非参数时间序列分析方法,适用于提取趋势、周期性和噪声成分。本项目使用MATLAB 2022a版本实现从强干扰序列中提取趋势线,并通过可视化展示了原时间序列与提取的趋势分量。代码实现了滑动窗口下的奇异值分解和分组重构,适用于非线性和非平稳时间序列分析。此方法在气候变化、金融市场和生物医学信号处理等领域有广泛应用。
          |
          16天前
          |
          资源调度 算法
          基于迭代扩展卡尔曼滤波算法的倒立摆控制系统matlab仿真
          本课题研究基于迭代扩展卡尔曼滤波算法的倒立摆控制系统,并对比UKF、EKF、迭代UKF和迭代EKF的控制效果。倒立摆作为典型的非线性系统,适用于评估不同滤波方法的性能。UKF采用无迹变换逼近非线性函数,避免了EKF中的截断误差;EKF则通过泰勒级数展开近似非线性函数;迭代EKF和迭代UKF通过多次迭代提高状态估计精度。系统使用MATLAB 2022a进行仿真和分析,结果显示UKF和迭代UKF在非线性强的系统中表现更佳,但计算复杂度较高;EKF和迭代EKF则更适合维数较高或计算受限的场景。

          热门文章

          最新文章