FAQ系列 | B+树索引和哈希索引的区别

简介: FAQ系列 | B+树索引和哈希索引的区别

导读

在MySQL里常用的索引数据结构有B+树索引和哈希索引两种,我们来看下这两种索引数据结构的区别及其不同的应用建议。

二者区别

备注:先说下,在MySQL文档里,实际上是把B+树索引写成了BTREE,例如像下面这样的写法:

CREATE TABLE t(

aid int unsigned not null auto_increment,

userid int unsigned not null default 0,

username varchar(20) not null default ‘’,

detail varchar(255) not null default ‘’,

primary key(aid),

unique key(uid) USING BTREE,

key (username(12)) USING BTREE此处 uname 列只创建了最左12个字符长度的部分索引

)engine=InnoDB;

一个经典的B+树索引数据结构见下图:

image.png

(图片源自网络)

B+树是一个平衡的多叉树,从根节点到每个叶子节点的高度差值不超过1,而且同层级的节点间有指针相互链接。

在B+树上的常规检索,从根节点到叶子节点的搜索效率基本相当,不会出现大幅波动,而且基于索引的顺序扫描时,也可以利用双向指针快速左右移动,效率非常高。

因此,B+树索引被广泛应用于数据库、文件系统等场景。顺便说一下,xfs文件系统比ext3/ext4效率高很多的原因之一就是,它的文件及目录索引结构全部采用B+树索引,而ext3/ext4的文件目录结构则采用Linked list, hashed B-tree、Extents/Bitmap等索引数据结构,因此在高I/O压力下,其IOPS能力不如xfs。


详细可参见:

https://en.wikipedia.org/wiki/Ext4
https://en.wikipedia.org/wiki/XFS


哈希索引的示意图则是这样的:

image.png

(图片源自网络)

简单地说,哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。

从上面的图来看,B+树索引和哈希索引的明显区别是:

  • 如果是等值查询,那么哈希索引明显有绝对优势,因为只需要经过一次算法即可找到相应的键值;当然了,这个前提是,键值都是唯一的。如果键值不是唯一的,就需要先找到该键所在位置,然后再根据链表往后扫描,直到找到相应的数据;
  • 从示意图中也能看到,如果是范围查询检索,这时候哈希索引就毫无用武之地了,因为原先是有序的键值,经过哈希算法后,有可能变成不连续的了,就没办法再利用索引完成范围查询检索;
  • 同理,哈希索引也没办法利用索引完成排序,以及like ‘xxx%’ 这样的部分模糊查询(这种部分模糊查询,其实本质上也是范围查询);
  • 哈希索引也不支持多列联合索引的最左匹配规则
  • B+树索引的关键字检索效率比较平均,不像B树那样波动幅度大,在有大量重复键值情况下,哈希索引的效率也是极低的,因为存在所谓的哈希碰撞问题

后记

在MySQL中,只有HEAP/MEMORY引擎表才能显式支持哈希索引(NDB也支持,但这个不常用),InnoDB引擎的自适应哈希索引(adaptive hash index)不在此列,因为这不是创建索引时可指定的。

还需要注意到:HEAP/MEMORY引擎表在mysql实例重启后,数据会丢失。

通常,B+树索引结构适用于绝大多数场景,像下面这种场景用哈希索引才更有优势:

在HEAP表中,如果存储的数据重复度很低(也就是说基数很大),对该列数据以等值查询为主,没有范围查询、没有排序的时候,特别适合采用哈希索引

例如这种SQL:

SELECT … FROM t WHERE C1 = ?; — 仅等值查询

在大多数场景下,都会有范围查询、排序、分组等查询特征,用B+树索引就可以了。

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
4天前
|
数据采集 人工智能 安全
|
13天前
|
云安全 监控 安全
|
5天前
|
自然语言处理 API
万相 Wan2.6 全新升级发布!人人都能当导演的时代来了
通义万相2.6全新升级,支持文生图、图生视频、文生视频,打造电影级创作体验。智能分镜、角色扮演、音画同步,让创意一键成片,大众也能轻松制作高质量短视频。
1107 152
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
Z-Image:冲击体验上限的下一代图像生成模型
通义实验室推出全新文生图模型Z-Image,以6B参数实现“快、稳、轻、准”突破。Turbo版本仅需8步亚秒级生成,支持16GB显存设备,中英双语理解与文字渲染尤为出色,真实感和美学表现媲美国际顶尖模型,被誉为“最值得关注的开源生图模型之一”。
1784 9
|
10天前
|
人工智能 自然语言处理 API
一句话生成拓扑图!AI+Draw.io 封神开源组合,工具让你的效率爆炸
一句话生成拓扑图!next-ai-draw-io 结合 AI 与 Draw.io,通过自然语言秒出架构图,支持私有部署、免费大模型接口,彻底解放生产力,绘图效率直接爆炸。
709 152
|
12天前
|
人工智能 安全 前端开发
AgentScope Java v1.0 发布,让 Java 开发者轻松构建企业级 Agentic 应用
AgentScope 重磅发布 Java 版本,拥抱企业开发主流技术栈。
664 14
|
7天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
469 5