优化系列 | 实例解析MySQL性能瓶颈排查定位

简介: 优化系列 | 实例解析MySQL性能瓶颈排查定位

导读

从一个现场说起,全程解析如何定位性能瓶颈。

排查过程

收到线上某业务后端的MySQL实例负载比较高的告警信息,于是登入服务器检查确认。

1. 首先我们进行OS层面的检查确认

登入服务器后,我们的目的是首先要确认当前到底是哪些进程引起的负载高,以及这些进程卡在什么地方,瓶颈是什么。

通常来说,服务器上最容易成为瓶颈的是磁盘I/O子系统,因为它的读写速度通常是最慢的。即便是现在的PCIe SSD,其随机I/O读写速度也是不如内存来得快。当然了,引起磁盘I/O慢得原因也有多种,需要确认哪种引起的。

第一步,我们一般先看整体负载如何,负载高的话,肯定所有的进程跑起来都慢。

可以执行指令 w 或者 sar -q 1 来查看负载数据,例如(横版查看):

[yejr@imysql.com:~ ]# w
 11:52:58 up 702 days, 56 min,  1 user,  load average: 7.20, 6.70, 6.47
USER     TTY      FROM              LOGIN@   IDLE   JCPU   PCPU WHAT
root     pts/0    1.xx.xx.xx        11:51    0.00s  0.03s  0.00s w

或者 sar -q 的观察结果(横版查看):

[yejr@imysql.com:~ ]# sar -q 1

Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com) 01/13/2016 x86_64 (24 CPU)
02:51:18 PM runq-sz plist-sz ldavg-1 ldavg-5 ldavg-15 blocked
02:51:19 PM 4 2305 6.41 6.98 7.12 3
02:51:20 PM 2 2301 6.41 6.98 7.12 4
02:51:21 PM 0 2300 6.41 6.98 7.12 5
02:51:22 PM 6 2301 6.41 6.98 7.12 8
02:51:23 PM 2 2290 6.41 6.98 7.12 8

load average大意表示当前CPU中有多少任务在排队等待,等待越多说明负载越高,跑数据库的服务器上,一般load值超过5的话,已经算是比较高的了。

引起load高的原因也可能有多种:

  1. 某些进程/服务消耗更多CPU资源(服务响应更多请求或存在某些应用瓶颈);
  2. 发生比较严重的swap(可用物理内存不足);
  3. 发生比较严重的中断(因为SSD或网络的原因发生中断);
  4. 磁盘I/O比较慢(会导致CPU一直等待磁盘I/O请求);

这时我们可以执行下面的命令来判断到底瓶颈在哪个子系统(横版查看):

[yejr@imysql.com:~ ]# top
top - 11:53:04 up 702 days, 56 min, 1 user, load average: 7.18, 6.70, 6.47
Tasks: 576 total, 1 running, 575 sleeping, 0 stopped, 0 zombie
Cpu(s): 7.7%us, 3.4%sy, 0.0%ni, 77.6%id, 11.0%wa, 0.0%hi, 0.3%si, 0.0%st
Mem: 49374024k total, 32018844k used, 17355180k free, 115416k buffers
Swap: 16777208k total, 117612k used, 16659596k free, 5689020k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
14165 mysql 20 0 8822m 3.1g 4672 S 162.3 6.6 89839:59 mysqld
40610 mysql 20 0 25.6g 14g 8336 S 121.7 31.5 282809:08 mysqld
49023 mysql 20 0 16.9g 5.1g 4772 S 4.6 10.8 34940:09 mysqld

很明显是前面两个mysqld进程导致整体负载较高。

而且,从 Cpu(s) 这行的统计结果也能看的出来,%us%wa 的值较高,表示当前比较大的瓶颈可能是在用户进程消耗的CPU以及磁盘I/O等待上

我们先分析下磁盘I/O的情况。

执行 sar -d 确认磁盘I/O是否真的较大(横版查看):

[yejr@imysql.com:~ ]# sar -d 1
Linux 2.6.32-431.el6.x86_64 (yejr.imysql.com) 01/13/2016 x86_64 (24 CPU)
11:54:32 AM dev8-0 5338.00 162784.00 1394.00 30.76 5.24 0.98 0.19 100.00
11:54:33 AM dev8-0 5134.00 148032.00 32365.00 35.14 6.93 1.34 0.19 100.10
11:54:34 AM dev8-0 5233.00 161376.00 996.00 31.03 9.77 1.88 0.19 100.00
11:54:35 AM dev8-0 4566.00 139232.00 1166.00 30.75 5.37 1.18 0.22 100.00
11:54:36 AM dev8-0 4665.00 145920.00 630.00 31.41 5.94 1.27 0.21 100.00
11:54:37 AM dev8-0 4994.00 156544.00 546.00 31.46 7.07 1.42 0.20 100.00

再利用 iotop 确认到底哪些进程消耗的磁盘I/O资源最多(横版查看):

[yejr@imysql.com:~ ]# iotop
Total DISK READ: 60.38 M/s | Total DISK WRITE: 640.34 K/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
16397 be/4 mysql 8.92 M/s 0.00 B/s 0.00 % 94.77 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
7295 be/4 mysql 10.98 M/s 0.00 B/s 0.00 % 93.59 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14295 be/4 mysql 10.50 M/s 0.00 B/s 0.00 % 93.57 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14288 be/4 mysql 14.30 M/s 0.00 B/s 0.00 % 91.86 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14292 be/4 mysql 14.37 M/s 0.00 B/s 0.00 % 91.23 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320

可以看到,端口号是3320的实例消耗的磁盘I/O资源比较多,那就看看这个实例里都有什么查询在跑吧。

2. MySQL层面检查确认

首先看下当前都有哪些查询在运行(横版查看):

[yejr@imysql.com:~ ]# iotop
Total DISK READ: 60.38 M/s | Total DISK WRITE: 640.34 K/s
TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
16397 be/4 mysql 8.92 M/s 0.00 B/s 0.00 % 94.77 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
7295 be/4 mysql 10.98 M/s 0.00 B/s 0.00 % 93.59 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14295 be/4 mysql 10.50 M/s 0.00 B/s 0.00 % 93.57 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14288 be/4 mysql 14.30 M/s 0.00 B/s 0.00 % 91.86 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320
14292 be/4 mysql 14.37 M/s 0.00 B/s 0.00 % 91.23 % mysqld --basedir=/usr/local/m~og_3320/mysql.sock --port=3320

可以看到有不少慢查询还未完成,从slow query log中也能发现,这类SQL发生的频率很高。

这是一个非常低效的SQL写法,导致需要对整个主键进行扫描,但实际上只需要取得一个最大值而已,从slow query log中可看到:

[yejr@imysql.com(db)]> mysqladmin pr|grep -v Sleep
+----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+
| Id |User| Host | db |Command|Time | State | Info |
+----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+
| 25 | x | 10.x:8519 | db | Query | 68 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404612 order by Fvideoid) t1 |
| 26 | x | 10.x:8520 | db | Query | 65 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>484915 order by Fvideoid) t1 |
| 28 | x | 10.x:8522 | db | Query | 130 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>404641 order by Fvideoid) t1 |
| 27 | x | 10.x:8521 | db | Query | 167 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324157 order by Fvideoid) t1 |
| 36 | x | 10.x:8727 | db | Query | 174 | Sending data | select max(Fvideoid) from (select Fvideoid from t where Fvideoid>324346 order by Fvideoid) t1 |
+----+----+----------+----+-------+-----+--------------+-----------------------------------------------------------------------------------------------+

每次都要扫描500多万行数据,却只为读取一个最大值,效率非常低。

经过分析,这个SQL稍做简单改造即可在个位数毫秒级内完成,原先则是需要150-180秒才能完成,提升了N次方。

改造的方法是:对查询结果做一次倒序排序,取得第一条记录即可。而原先的做法是对结果正序排序,取最后一条记录,汗啊。。。

写在最后,小结

在这个例子中,产生瓶颈的原因比较好定位,SQL优化也不难,实际线上环境中,通常有以下几种常见的原因导致负载较高:

  1. 一次请求读写的数据量太大,导致磁盘I/O读写值较大,例如一个SQL里要读取或更新几万行数据甚至更多,这种最好是想办法减少一次读写的数据量;
  2. SQL查询中没有适当的索引可以用来完成条件过滤、排序(ORDER BY)、分组(GROUP BY)、数据聚合(MIN/MAX/COUNT/AVG等),添加索引或者进行SQL改写吧;
  3. 瞬间突发有大量请求,这种一般只要能扛过峰值就好,保险起见还是要适当提高服务器的配置,万一峰值抗不过去就可能发生雪崩效应;
  4. 因为某些定时任务引起的负载升高,比如做数据统计分析和备份,这种对CPU、内存、磁盘I/O消耗都很大,最好放在独立的slave服务器上执行;
  5. 服务器自身的节能策略发现负载较低时会让CPU降频,当发现负载升高时再自动升频,但通常不是那么及时,结果导致CPU性能不足,抗不过突发的请求;
  6. 使用raid卡的时候,通常配备BBU(cache模块的备用电池),早期一般采用锂电池技术,需要定期充放电(DELL服务器90天一次,IBM是30天),我们可以通过监控在下一次充放电的时间前在业务低谷时提前对其进行放电,不过新一代服务器大多采用电容式电池,也就不存在这个问题了。
  7. 文件系统采用ext4甚至ext3,而不是xfs,在高I/O压力时,很可能导致%util已经跑到100%了,但iops却无法再提升,换成xfs一般可获得大幅提升;
  8. 内核的io scheduler策略采用cfq而非deadline或noop,可以在线直接调整,也可获得大幅提升。
            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
SQL 关系型数据库 MySQL
Java 最常见的面试题:mysql 问题排查都有哪些手段?
Java 最常见的面试题:mysql 问题排查都有哪些手段?
|
SQL 关系型数据库 MySQL
MySQL如何排查和删除重复数据
该文章介绍了在MySQL中如何排查和删除重复数据的方法,包括通过组合字段生成唯一标识符以及使用子查询和聚合函数来定位并删除重复记录的具体步骤。
1018 2
|
10月前
|
关系型数据库 MySQL 网络安全
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
416 25
|
SQL 关系型数据库 MySQL
遇到mysql数据库死锁,你会怎么排查?
遇到mysql数据库死锁,你会怎么排查?
1142 0
|
SQL 关系型数据库 MySQL
破防了,谁懂啊家人们:记一次mysql问题排查
某天用户反馈线上产品报错,本文记录了这次mysql问题排查和修复的过程,希望给大家参考。
|
SQL 关系型数据库 MySQL
(十八)MySQL排查篇:该如何定位并解决线上突发的Bug与疑难杂症?
前面《MySQL优化篇》、《SQL优化篇》两章中,聊到了关于数据库性能优化的话题,而本文则再来聊一聊关于MySQL线上排查方面的话题。线上排查、性能优化等内容是面试过程中的“常客”,而对于线上遇到的“疑难杂症”,需要通过理性的思维去分析问题、排查问题、定位问题,最后再着手解决问题,同时,如果解决掉所遇到的问题或瓶颈后,也可以在能力范围之内尝试最优解以及适当考虑拓展性。
1216 3
|
消息中间件 关系型数据库 MySQL
实时计算 Flink版操作报错合集之运行mysql to doris pipeline时报错,该如何排查
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
SQL 运维 关系型数据库
记一次 MySQL 主从同步异常的排查记录,百转千回!
这篇文章主要讲述了在 MySQL 主从同步过程中遇到的一个问题,即从库的 SQL 线程因 Relay Log 损坏导致同步停止。作者首先介绍了现象,从库的 Slave_IO_Running 正常,但 Slave_SQL_Running 停止,报错信息提示可能是 binlog 或 relay log 文件损坏。
665 7
|
SQL 存储 关系型数据库
mysql 利用 performance_schema 排查 qps 过高过程记录
mysql 利用 performance_schema 排查 qps 过高过程记录
642 0
|
Java 关系型数据库 MySQL
记一次mysql线上问题排查
背景是这样的,我们有个系统每天都会调起多个定时任务,首先quartz每分钟会调起一次检查时间的任务,如果发现时间到达设定的任务执行时间,java代码会向数据库里写入一条记录,然后有另外一个系统就会根据这条记录执行相应的任务,有天有同事反馈说有条定时任务没执行。。
178 0

推荐镜像

更多