SQL调优指南—智能索引推荐

简介: 索引优化通常需要依赖运维或开发人员对数据库引擎内部优化和执行原理的深入理解。为优化体验和降低操作门槛,PolarDB-X推出了基于代价优化器的索引推荐功能,可根据查询语句分析并推荐索引,帮助您降低查询耗时,提升数据库性能。

注意事项

索引推荐功能仅针对您当前指定的SQL查询语句进行分析与推荐。在根据推荐的信息创建索引前,您需要评估创建该索引对其它查询的影响。

环境说明

TPC-H是业界常用的基准测试方法,由TPC委员会制定发布,用于评测数据库的分析型查询能力。TPC-H基准测试方法包含8张数据表、22条复杂的SQL查询(即Q1~Q22)。下图为执行TPC-H中的Q17(小订单收入查询)的返回信息,可查看到执行该查询语句消耗的时间为28.76秒。本文将通过智能索引推荐功能,优化该查询语句的执行效率。

  1. 查询智能索引推荐信息如需查询某个查询语句的智能索引推荐信息,您只需在该查询语句前增加EXPLAIN ADVISOR命令,示例如下:
EXPLAIN ADVISOR
SELECT sum(l_extendedprice) / 7.0 AS avg_yearly
FROM lineitem,
     part
WHERE p_partkey = l_partkey
  AND p_brand = 'Brand#23'
  AND p_container = 'MED BOX'
  AND l_quantity <
    (SELECT 0.2 * avg(`l_quantity`)
     FROM lineitem
     WHERE l_partkey = p_partkey);
  1. 执行上述命令后,PolarDB-X将返回推荐的索引创建语句、添加索引前后的代价等信息,详细的返回信息及其注释如下所示:说明
    • 本案例中,预计磁盘I/O提升百分比为3024.7%,表明使用推荐的索引将带来较大的收益。
    • 当PolarDB-X无法推荐索引时,返回信息中会建议您在业务低峰期,对目标表执行Analyze Table命令刷新统计信息(该操作会消耗较大的I/O资源)。当统计信息更新后,再次执行索引推荐可获得更准确的索引。SQL复制代码。
IMPROVE_VALUE: 2465.3%        # 预计综合代价提升百分比

IMPROVE_CPU: 59377.4% # 预计CPU提升百分比
IMPROVE_MEM: 0.4% # 预计内存提升百分比
IMPROVE_IO: 3024.7% # 预计磁盘I/O提升百分比
IMPROVE_NET: 2011.1% # 预计网络传输提升百分比
BEFORE_VALUE: 4.711359845E8 # 添加索引前综合代价值
BEFORE_CPU: 1.19405577E7 # 添加索引前CPU估算值
BEFORE_MEM: 426811.2 # 添加索引前内存消耗估算值
BEFORE_IO: 44339 # 添加索引前磁盘I/O估算值
BEFORE_NET: 47.5 # 添加索引前网络传输估算值
AFTER_VALUE: 1.83655008E7 # 添加索引后综合代价值
AFTER_CPU: 20075.8 # 添加索引后CPU估算值
AFTER_MEM: 425016 # 添加索引后内存消耗估算值
AFTER_IO: 1419 # 添加索引后磁盘I/O估算值
AFTER_NET: 2.2 # 添加索引后网络传输估算值
ADVISE_INDEX: ALTER TABLE `lineitem` ADD INDEX `__advise_index_lineiteml_partkey`(`l_partkey`);
/ ADVISE_INDEX中的内容为推荐的索引创建语句 /
NEW_PLAN: # 添加索引后预计执行计划
Project(avg_yearly="$f0 / ?0")
HashAgg($f0="SUM(l_extendedprice)")
Filter(condition="l_quantity < $16 * f17w0$o0")
SortWindow(p_partkey="p_partkey", l_partkey="l_partkey", l_quantity="l_quantity", l_extendedprice="l_extendedprice", $16&#61;&#34;$16", f5w0$o0&#61;&#34;window#0AVG($2)", Reference Windows="window#0=window(partition {1} order by [] range between UNBOUNDED PRECEDING and UNBOUNDED PRECEDING aggs [AVG($2)])")
MemSort(sort="l_partkey ASC")
BKAJoin(condition="l_partkey = p_partkey", type="inner")
Gather(concurrent=true)
LogicalView(tables="[0000,0001].part", shardCount=2, sql="SELECT `p_partkey` FROM `part` AS `part` WHERE ((`p_brand` = ?) AND (`p_container` = ?))")
Gather(concurrent=true)
LogicalView(tables="[0000,0001].lineitem", shardCount=2, sql="SELECT `l_partkey`, `l_quantity`, `l_extendedprice`, ? AS `$16` FROM `lineitem` AS `lineitem` WHERE (`l_partkey` IN (...))")
INFO: LOCAL_INDEX # 其它信息
  1. 根据推荐信息创建索引
    1. 评估创建该索引带来的收益,然后根据返回结果ADVISE_INDEX中的SQL语句创建索引。
ALTER TABLE `lineitem` ADD  INDEX `__advise_index_lineiteml_partkey`(`l_partkey`);
    1. 再次执行TPC-H中的Q17(小订单收入查询),耗时减少至1.41秒,查询效率得到大幅提升。44.png
相关文章
|
5月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
8月前
|
SQL 存储 关系型数据库
SQL优化策略与实践:组合索引与最左前缀原则详解
本文介绍了SQL优化的多种方式,包括优化查询语句(避免使用SELECT *、减少数据处理量)、使用索引(创建合适索引类型)、查询缓存、优化表结构、使用存储过程和触发器、批量处理以及分析和监控数据库性能。同时,文章详细讲解了组合索引的概念及其最左前缀原则,即MySQL从索引的最左列开始匹配条件,若跳过最左列,则索引失效。通过示例代码,展示了如何在实际场景中应用这些优化策略,以提高数据库查询效率和系统响应速度。
352 10
|
9月前
|
SQL 索引
【YashanDB知识库】字段加上索引后,SQL查询不到结果
【YashanDB知识库】字段加上索引后,SQL查询不到结果
|
SQL 存储 关系型数据库
如何巧用索引优化SQL语句性能?
本文从索引角度探讨了如何优化MySQL中的SQL语句性能。首先介绍了如何通过查看执行时间和执行计划定位慢SQL,并详细解析了EXPLAIN命令的各个字段含义。接着讲解了索引优化的关键点,包括聚簇索引、索引覆盖、联合索引及最左前缀原则等。最后,通过具体示例展示了索引如何提升查询速度,并提供了三层B+树的存储容量计算方法。通过这些技巧,可以帮助开发者有效提升数据库查询效率。
1107 2
|
10月前
|
SQL 关系型数据库 OLAP
云原生数据仓库AnalyticDB PostgreSQL同一个SQL可以实现向量索引、全文索引GIN、普通索引BTREE混合查询,简化业务实现逻辑、提升查询性能
本文档介绍了如何在AnalyticDB for PostgreSQL中创建表、向量索引及混合检索的实现步骤。主要内容包括:创建`articles`表并设置向量存储格式,创建ANN向量索引,为表增加`username`和`time`列,建立BTREE索引和GIN全文检索索引,并展示了查询结果。参考文档提供了详细的SQL语句和配置说明。
337 2
|
存储 SQL 关系型数据库
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
MySQL调优主要分为三个步骤:监控报警、排查慢SQL、MySQL调优。 排查慢SQL:开启慢查询日志 、找出最慢的几条SQL、分析查询计划 。 MySQL调优: 基础优化:缓存优化、硬件优化、参数优化、定期清理垃圾、使用合适的存储引擎、读写分离、分库分表; 表设计优化:数据类型优化、冷热数据分表等。 索引优化:考虑索引失效的11个场景、遵循索引设计原则、连接查询优化、排序优化、深分页查询优化、覆盖索引、索引下推、用普通索引等。 SQL优化。
1694 15
【MySQL调优】如何进行MySQL调优?从参数、数据建模、索引、SQL语句等方向,三万字详细解读MySQL的性能优化方案(2024版)
|
存储 关系型数据库 MySQL
MySQL高级篇——覆盖索引、前缀索引、索引下推、SQL优化、主键设计
覆盖索引、前缀索引、索引下推、SQL优化、EXISTS 和 IN 的区分、建议COUNT(*)或COUNT(1)、建议SELECT(字段)而不是SELECT(*)、LIMIT 1 对优化的影响、多使用COMMIT、主键设计、自增主键的缺点、淘宝订单号的主键设计、MySQL 8.0改造UUID为有序
MySQL高级篇——覆盖索引、前缀索引、索引下推、SQL优化、主键设计
|
SQL Oracle 关系型数据库
SQL优化-使用联合索引和函数索引
在一次例行巡检中,发现一条使用 `to_char` 函数将日期转换为字符串的 SQL 语句 CPU 利用率很高。为了优化该语句,首先分析了 where 条件中各列的选择性,并创建了不同类型的索引,包括普通索引、函数索引和虚拟列索引。通过对比不同索引的执行计划,最终确定了使用复合索引(包含函数表达式)能够显著降低查询成本,提高执行效率。
232 3
|
SQL 关系型数据库 MySQL
如何确认SQL用了索引:详细技巧与方法
在数据库管理中,索引是提高SQL查询性能的重要手段
2360 5
|
索引
SQL_创建和管理索引
SQL_创建和管理索引
102 1