SQL调优指南—SQL调优进阶—查询改写与下推

简介: 下推是查询改写的一项重要优化,利用PolarDB-X的拆分信息来优化执行计划,使得算子尽量下推以达到提前过滤数据、减少网络传输、并行计算等目的。

背景信息

根据PolarDB-X的SQL语句优化的基本原则,可以下推尽量更多的计算到存储层MySQL上执行。可下推计算主要包括:

  • JOIN连接
  • 过滤条件(如WHEREHAVING
  • 计算(如COUNTGROUP BY
  • 排序(如ORDER BY
  • 去重(如DISTINCT
  • 函数计算(如NOW()函数)
  • 子查询

通过explain optimizer + sql可以看到查询改写的具体过程。

Project和Filter下推

一条SQL的执行计划在如下生成过程中,Filter和Project被先后下推到LogicalView算子里面。Filter和Project下推可以达到提前过滤数据,减少网络传输等效果。


mysql> explain optimizer select c_custkey,c_name from customer where c_custkey = 1;

其中c_custkey是分区键。1111.png

背景信息

根据PolarDB-X的SQL语句优化的基本原则,可以下推尽量更多的计算到存储层MySQL上执行。可下推计算主要包括:

  • JOIN连接
  • 过滤条件(如WHEREHAVING
  • 计算(如COUNTGROUP BY
  • 排序(如ORDER BY
  • 去重(如DISTINCT
  • 函数计算(如NOW()函数)
  • 子查询

通过explain optimizer + sql可以看到查询改写的具体过程。

Project和Filter下推

一条SQL的执行计划在如下生成过程中,Filter和Project被先后下推到LogicalView算子里面。Filter和Project下推可以达到提前过滤数据,减少网络传输等效果。


mysql> explain optimizer select c_custkey,c_name from customer where c_custkey = 1;

其中c_custkey是分区键。22222.png

拆分键不为c_nationkey情况:6666.png

JOIN下推

JOIN下推需要满足以下条件:

  • t1与t2表的拆分方式一致(包括分库键、分表键、拆分函数、分库分表数目)。
  • JOIN条件中包含t1,t2表拆分键的等值关系。此外,任意表JOIN广播表总是可以下推。


mysql> explain optimizer select * from t1, t2 where t1.id = t2.id;

一条SQL的执行计划在如下生成过程中,JOIN下推到LogicalView算子里面。JOIN下推可以达到计算离存储更近,并行执行加速的效果。1.1.png

JoinClustering

当有多个表执行JOIN操作时,PolarDB-X会通过join clustering的优化技术将JOIN进行重排序,将可下推的JOIN放到相邻的位置,从而让它可以被正常下推。示例如下:

假设原JOIN顺序为t2、t1、l2, 经过重排序之后,t2和l2的JOIN操作依然能下推到LogicalView。SQL复制代码


mysql> explain select t2.id from t2 join t1 on t2.id = t1.id join l2 on t1.id = l2.id;

Project(id="id")
HashJoin(condition="id = id AND id = id0", type="inner")
Gather(concurrent=true)
LogicalView(tables="t2_[0-3],l2_[0-3]", shardCount=4, sql="SELECT `t2`.`id`, `l2`.`id` AS `id0` FROM `t2` AS `t2` INNER JOIN `l2` AS `l2` ON (`t2`.`id` = `l2`.`id`) WHERE (`t2`.`id` = `l2`.`id`)")
Gather(concurrent=true)
LogicalView(tables="t1", shardCount=2, sql="SELECT `id` FROM `t1` AS `t1`")

子查询下推

一条SQL的执行计划在如下生成过程中,子查询下推到LogicalView算子里面。子查询下推可以达到计算离存储更近,并行执行加速的效果。

  1. 子查询会先被转换成Semi JoinAnti Join
  2. 如果满足上节中JOIN下推的判断条件,就会将Semi JoinAnti Join下推至LogicalView
  3. 下推后的Semi JoinAnti Join会被还原为子查询。


explain optimizer select * from t1 where id in (select id from t2);

2.1.png

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
自然语言处理 算法 前端开发
Multi-Agent实践第5期:RAG智能体的应用:让AgentScope介绍一下自己吧
本期文章,我们将向大家展示如何使用AgentScope中构建和使用具有RAG功能的智能体,创造AgentScope助手群,为大家解答和AgentScope相关的问题。
|
消息中间件 监控 Cloud Native
云原生架构下的数据一致性挑战与解决方案####
在数字化转型加速的今天,云原生架构以其轻量级、弹性伸缩和高可用性成为企业IT架构的首选。然而,在享受其带来的灵活性的同时,数据一致性问题成为了不可忽视的挑战。本文探讨了云原生环境中数据一致性的复杂性,分析了导致数据不一致的根本原因,并提出了几种有效的解决策略,旨在为开发者和企业提供实践指南,确保在动态变化的云环境中保持数据的完整性和准确性。 ####
|
存储 自然语言处理 文字识别
开放应用架构,建设全新可精细化运营的百炼
本文介绍了阿里云智能集团在百炼大模型应用中的技术实践和运营经验。主要内容包括:1) RAG技术的背景及其在落地时面临的挑战;2) 多模态多语言RAG技术的研发与应用;3) 多模态多元embedding和rank模型的训练;4) 基于千问大模型的embedding和rank模型;5) 开源社区推出的GT千问系列模型;6) 模型应用中的可运营实践;7) AI运营的具体方法论和实践经验。通过这些内容,展示了如何解决实际应用中的复杂需求,提升系统的准确性和用户体验。
|
负载均衡 监控 算法
【阿里二面面试题】说说你对 Raft 算法的理解?
【阿里二面面试题】说说你对 Raft 算法的理解?
1260 0
【阿里二面面试题】说说你对 Raft 算法的理解?
|
机器学习/深度学习 人工智能 自然语言处理
阿里云百炼大模型:引领企业智能化升级的下一代 AI 驱动引擎
随着人工智能技术的快速发展,大规模预训练模型正在改变各行各业的智能化进程。阿里云百炼大模型(Ba-Lian Large Model)作为阿里云推出的企业级 AI 解决方案,通过深度学习、自然语言处理、计算机视觉等前沿技术,帮助企业实现智能化升级,提升业务效率和创新能力。本文将详细介绍阿里云百炼大模型的核心技术、应用场景及其优势,帮助企业更好地理解和利用这一革命性工具。
2949 2
|
存储 自然语言处理 算法
【算法精讲系列】MGTE系列模型,RAG实施中的重要模型
检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
2726 18
|
SQL 存储 关系型数据库
深入OceanBase内部机制:系统架构与组件精讲
深入OceanBase内部机制:系统架构与组件精讲
深入OceanBase内部机制:系统架构与组件精讲
|
存储 SQL 缓存
顶会论文解读|DEPART:分布式KV存储系统的副本解耦方案(3)
顶会论文解读|DEPART:分布式KV存储系统的副本解耦方案
351 0
顶会论文解读|DEPART:分布式KV存储系统的副本解耦方案(3)
|
弹性计算 运维 容灾
从人工到自动,泛微云上自动化部署实践
泛微借助阿里云的底层优势,将部分客户的服务迁移到云上,从硬件和网络上保证用户能够高效访问 OA 系统
从人工到自动,泛微云上自动化部署实践
|
机器学习/深度学习 传感器 人工智能
【探索AI未来】自动驾驶时代下的人工智能技术与挑战
【探索AI未来】自动驾驶时代下的人工智能技术与挑战
907 0