[MySQL FAQ]系列 — MySQL复制中slave延迟监控

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: [MySQL FAQ]系列 — MySQL复制中slave延迟监控

在MySQL复制环境中,我们通常只根据 Seconds_Behind_Master 的值来判断SLAVE的延迟。这么做大部分情况下尚可接受,但并不够准确,而应该考虑更多因素。

首先,我们先看下SLAVE的状态:

yejr@imysql.com [(none)]> show slave status\G
*************************** 1. row ***************************
Slave_IO_State: Waiting for master to send event
***
Master_Log_File: mysql-bin.000327
Read_Master_Log_Pos: 668711237
Relay_Log_File: mysql-relay-bin.002999
Relay_Log_Pos: 214736858
Relay_Master_Log_File: mysql-bin.000327
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
***
Skip_Counter: 0
Exec_Master_Log_Pos: 654409041
Relay_Log_Space: 229039311
***
Seconds_Behind_Master: 3296
***

可以看到 Seconds_Behind_Master 的值是 3296,也就是SLAVE至少延迟了 3296 秒。

我们再来看下SLAVE上的2个REPLICATION进程状态:

yejr@imysql.com [(none)]> show full processlist\G
*************************** 1. row ***************************
Id: 6
User: system user
Host:
db: NULL
Command: Connect
Time: 22005006
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 7
User: system user
Host:
db: NULL
Command: Connect
Time: 3293
State: Updating
Info: UPDATE ** SET ** WHERE **

可以看到SQL线程一直在执行UPDATE操作,注意到 Time 的值是 3293,看起来像是这个UPDATE操作执行了3293秒,一个普通的SQL而已,肯定不至于需要这么久。

实际上,在REPLICATION进程中,Time 这列的值可能有几种情况:

1、SQL线程当前执行的binlog(实际上是relay log)中的timestamp和IO线程最新的timestamp的差值,这就是通常大家认为的 Seconds_Behind_Master 值,并不是某个SQL的实际执行耗时;

2、SQL线程当前如果没有活跃SQL在执行的话,Time值就是SQL线程的idle time;

而IO线程的Time值则是该线程自从启动以来的总时长(多少秒),如果系统时间在IO线程启动后发生修改的话,可能会导致该Time值异常,比如变成负数,或者非常大。

来看下面几个状态:

#设置pager,只查看关注的几个status值
yejr@imysql.com [(none)]> pager cat | egrep -i 'system user|Exec_Master_Log_Pos|Seconds_Behind_Master|Read_Master_Log_Pos'


#这是没有活跃SQL的情况,Time值是idle time,并且 Seconds_Behind_Master 为 0
yejr@imysql.com [(none)]> show processlist; show slave status\G
| 6 | system user | | NULL | Connect | 22004245 | Waiting for master to send event | NULL |
| 7 | system user | | NULL | Connect | 13 | Has read all relay log;**
Read_Master_Log_Pos: 445167889
Exec_Master_Log_Pos: 445167889
Seconds_Behind_Master: 0


#和上面一样
yejr@imysql.com [(none)]> show processlist; show slave status\G
| 6 | system user | | NULL | Connect | 22004248 | Waiting for master to send event | NULL |
| 7 | system user | | NULL | Connect | | Has read all relay log;**
Read_Master_Log_Pos: 445167889
Exec_Master_Log_Pos: 445167889
Seconds_Behind_Master: 0


#这时有活跃SQL了,Time值是和 Seconds_Behind_Master 一样,即SQL线程比IO线程“慢”了1秒
yejr@imysql.com [(none)]> show processlist; show slave status\G
| 6 | system user | | NULL | Connect | 22004252 | Waiting for master to send event | NULL |
| 7 | system user | | floweradmin | Connect | | Updating | update **
Read_Master_Log_Pos: 445182239
Exec_Master_Log_Pos: 445175263
Seconds_Behind_Master: 1


#和上面一样
yejr@imysql.com [(none)]> show processlist; show slave status\G
| 6 | system user | | NULL | Connect | 22004254 | Waiting for master to send event | NULL |
| 7 | system user | | floweradmin | Connect | | Updating | update **
Read_Master_Log_Pos: 445207174
Exec_Master_Log_Pos: 445196837
Seconds_Behind_Master: 1


好了,最后我们说下如何正确判断SLAVE的延迟情况:

1、首先看 Relay_Master_Log_FileMaster_Log_File 是否有差异;

2、如果Relay_Master_Log_FileMaster_Log_File 是一样的话,再来看Exec_Master_Log_PosRead_Master_Log_Pos 的差异,对比SQL线程比IO线程慢了多少个binlog事件;

3、如果Relay_Master_Log_FileMaster_Log_File 不一样,那说明延迟可能较大,需要从MASTER上取得binlog status,判断当前的binlog和MASTER上的差距;

因此,相对更加严谨的做法是:

在第三方监控节点上,对MASTER和SLAVE同时发起SHOW BINARY LOGSSHOW SLAVE STATUS\G的请求,最后判断二者binlog的差异,以及 Exec_Master_Log_PosRead_Master_Log_Pos 的差异。

例如:

在MASTER上执行SHOW BINARY LOGS 的结果是:

+------------------+--------------+
| Log_name | File_size |
+------------------+--------------+
| mysql-bin.000009 | 1073742063 |
| mysql-bin.000010 | 107374193 |
+------------------+--------------+

而在SLAVE上执行SHOW SLAVE STATUS\G 的结果是:

Master_Log_File: mysql-bin.000009
Read_Master_Log_Pos: 668711237
Relay_Master_Log_File: mysql-bin.000009
Slave_IO_Running: Yes
Slave_SQL_Running: Yes
***
Exec_Master_Log_Pos: 654409041
***
Seconds_Behind_Master: 3296
***

这时候,SLAVE实际的延迟应该是:

mysql-bin.000009 这个binlog中的binlog position 1073742063 和 SLAVE上读取到的binlog position之间的差异延迟,即:

1073742063 - 668711237 = 405030826 个binlog event

并且还要加上 mysql-bin.000010这个binlog已经产生的107374193个binlog event,共

107374193 + 405030826 = 512405019 个binlog event



            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
7天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
285 164
|
2天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
293 155
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
223 113
|
10天前
|
SQL 自然语言处理 调度
Agent Skills 的一次工程实践
**本文采用 Agent Skills 实现整体智能体**,开发框架采用 AgentScope,模型使用 **qwen3-max**。Agent Skills 是 Anthropic 新推出的一种有别于mcp server的一种开发方式,用于为 AI **引入可共享的专业技能**。经验封装到**可发现、可复用的能力单元**中,每个技能以文件夹形式存在,包含特定任务的指导性说明(SKILL.md 文件)、脚本代码和资源等 。大模型可以根据需要动态加载这些技能,从而扩展自身的功能。目前不少国内外的一些框架也开始支持此种的开发方式,详细介绍如下。
769 5