VASA-1:实时音频驱动的数字人说话面部视频生成技术
【6月更文挑战第8天】VASA-1是实时音频驱动的数字人面部视频生成技术,能根据输入音频精准生成匹配的面部表情。具备实时性、高准确性和适应性,适用于虚拟主播、在线教育和影视娱乐等领域。简单示例代码展示了其工作原理。尽管面临情感理解和硬件优化等挑战,但随着技术发展,VASA-1有望在更多领域广泛应用,开启生动数字世界的新篇章。
生成完美口型同步的 AI 数字人视频
在当今数字媒体和人工智能技术的推动下,生成完美口型同步的AI数字人视频成为备受关注的研究领域。本研究旨在开发一种技术,能够实现生成完美口型同步的AI数字人视频,使虚拟人物的口型与语音内容完美匹配。采用了深度学习方法,结合了语音识别、面部运动生成和视频合成技术,以实现这一目标。通过语音识别模型将输入的文本转换为音频波形,利用面部运动生成模型根据音频波形生成对应的面部动作序列,这些动作序列可以准确地反映出发音的口型和面部表情,最后生成口型同步的AI数字人视频。这项技术具有广泛的应用前景,可用于虚拟主持人、教育视频、学习平台等领域,提升视频内容的真实感和沟通效果。
CVPR 2024:文本一键转3D数字人骨骼动画,阿尔伯塔大学提出MoMask框架
【5月更文挑战第12天】CVPR 2024将展出阿尔伯塔大学的MoMask框架,该框架创新性地将文本转化为3D数字人骨骼动画,推动计算机图形学和动画制作的发展。MoMask结合NLP和计算机视觉,由文本编码器解析输入文本,动作生成器则将其转化为骨骼动画。该技术提升动画制作效率,降低门槛,但面临训练数据需求大和生成动画可能有偏差的挑战。[论文链接](https://arxiv.org/abs/2312.00063)
微软诈骗届王牌框架,真到可怕!一张照片+音频即可生成数字人
【5月更文挑战第8天】微软发布VASA-1框架,仅需照片和音频即可实时创建逼真数字人,引发诈骗关注。该技术利用深度学习,将静态照片转为动态面部特征,根据音频生成唇动、表情和头部动作,实现高真实感、实时、多模态输入的数字人生成。尽管有广泛应用前景,如虚拟主播、游戏角色等,但其高真实度也可能加剧诈骗风险,需平衡技术创新与安全防范。[[论文链接](https://arxiv.org/pdf/2404.10667.pdf)]