超算快速弹性伸缩场景下,如何构建一套准确、快速、可靠的监控体系成为关键点。阿里云在超算场景的主机监控落地实践,解决超算场景面临的挑战,交付一套可靠和全面的主机监控体系。
本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。
这篇文章旨在提供技术深度和实践指南,帮助开发者理解并应用这项创新技术来提高Golang应用的监控与服务治理能力。在接下来的部分,我们将通过一些实际案例,进一步展示如何在不同场景中应用这项技术,提供更多实践启示。
本文介绍了 Kubernetes 中的容器工作内存(WorkingSet)概念,它用于表示容器内存的实时使用量,尤其是活跃内存。
监控运维是一个体系化的工作,完善这个体系非一日之功。但是我们的业务不可一日无监控“裸奔”,在阿里云怎么样快速低成本的建立第一道资源监控的护城河?开箱即用的云监控,将会是你进入阿里云的第一个可靠的小伙伴。
当前,大多数面向 Golang 应用的监控能力主要是通过 SDK 方式接入,需要开放人员手动进行埋点,会存在一定问题。对此,可观测 Go Agent 应运而生。本文介绍的阿里云可观测 Go Agent 方案,能通过无侵入的方式实现应用监控能力。
本文讨论了微服务上云过程中的稳定性挑战,特别是变更引起的生产故障。阿里云MSE(微服务引擎)提供了一种全链路无损发布方案,旨在消除变更风险,实现白天流量高峰时的安全发布。
本文中我们分析了 什么 是 “流”,对比了 Java 上几种常见的 “流”库,引入和详细介绍了 Java 22 中的 Stream Gather API 。同时也简单分享了利用虚拟线程 如何简化 Stream map Concurrent操作符的实现。希望抛砖引玉和大家分享新的特性,共同进步。同时也希望大家都可以升级到新版本的 JDK,更好的赋能业务。