实时数据大屏是实时计算的重要应用场景之一,广泛应用在电商业务中,用于实时监控和分析电商平台的运营情况。通过大屏展示实时的销售额、订单量、用户活跃度、商品热度等数据指标,帮助业务人员随时了解业务的实时状态,快速发现问题和机会。同时,通过数据可视化和趋势分析,大屏也提供了决策支持和优化运营的功能,帮助业务人员做出及时的决策和调整策略,优化电商业务的运营效果。 下面以电商业务为背景,介绍如何构建经典实时数仓,实现实时数据从业务库到ODS层、DWD层、DWS层全链路流转,基于Dataphin和Quick BI实现实时数据大屏。
在本文中,作者探讨了ZooKeeper(ZK)的一个内存占用问题,特别是当有大量的Watcher和ZNode时,导致的内存消耗。
Dataphin 是阿里巴巴旗下的一个智能数据建设与治理平台,旨在帮助企业构建高效、可靠、安全的数据资产。在V4.1版本升级中,Dataphin 引入了Lindorm等多项新功能,并开启公共云半托管模式,优化代码搜索,为用户提供更加高效、灵活、安全的数据管理和运营环境,提升用户体验,促进企业数据资产的建设和价值挖掘。
本文主要介绍了基于 OpenTeletemetry 与 W3C 协议构建端到端全链路的解决方案,同时探讨了 RUM 与端到端链路集成的最佳实践,希望可以为大家在生产环境落地应用提供一些参考。
本文主要介绍了 ARMS 用户体验监控的基本功能特性,并介绍了在几种常见场景下的最佳实践。
RocketMQ 5.0 是为应对物联网(IoT)场景而发布的云原生消息中间件,旨在解决 IoT 中大规模设备连接、数据处理和边缘计算的需求。
阿里云可观测监控 Prometheus 版提供高性能、高可用、全托管的监控服务,对接开源生态,支持 Kubernetes、ECS 等场景,解决了自建 Prometheus+Thanos 高成本、运维复杂的问题。本文讨论在各个典型场景下的迁移方案。
RocketMQ 作为一款流行的分布式消息中间件,被广泛应用于各种大型分布式系统和微服务中,承担着异步通信、系统解耦、削峰填谷和消息通知等重要的角色。随着技术的演进和业务规模的扩大,安全相关的挑战日益突出,消息系统的访问控制也变得尤为重要。然而,RocketMQ 现有的 ACL 1.0 版本已经无法满足未来的发展。因此,我们推出了 RocketMQ ACL 2.0 升级版,进一步提升 RocketMQ 数据的安全性。本文将介绍 RocketMQ ACL 2.0 的新特性、工作原理,以及相关的配置和实践。