承接上一篇,这次跟大家分享一些与SQL优化相关的经验,希望能够帮助大家了解如果更有效率的使用ADBPG数据库。ADBPG数据库使用基于成本(cost-based)的优化器,像其他的数据库一样,在生成计划时会考虑联接表行数、索引、相关字段基数等因素,除此之外,优化器还会考虑数据所在的segment节点...
PolarDB已经成为小鹏汽车应对TB级别大表标注、分析查询的"利器"。
PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。
祝贺 Nacos 社区 Star 数突破 30000!值此时机,回顾过去的两年时间,Nacos 从 2.0.4 版本演进到了 2.4.2 版本,基本完成了当初构想的高性能、易拓展的目标,并且对产品的易用性和安全性进行了提升,同时优化了新的官网,并进行了多语言和更多生态支持。未来,Nacos 会向更安全、更泛化、更云原生的 Nacos3.0 演进。
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
在近来发生的 DeepSeek 遭遇的安全事件中,我们可以看到当前人工智能行业在网络安全方面的脆弱性,同时也为业界敲响了警钟。唯有通过全行业的协同努力,加强整体、完善的网络安全可观测建设,才能为 AI 技术的创新和发展构建一个安全而稳固的环境。我们期盼并相信,在攻克这些网络安全难题之后,AI 创新将迎来更加安全、灿烂的未来。
本系列文章将围绕东南亚头部科技集团的真实迁移历程展开,逐步拆解 BigQuery 迁移至 MaxCompute 过程中的关键挑战与技术创新。本篇为第六篇,MaxCompute SQL语法及函数功能增强。 注:客户背景为东南亚头部科技集团,文中用 GoTerra 表示。
如何基于向量数据库+LLM(大语言模型),打造更懂你的企业专属Chatbot。