本文以DeepSeek模型为核心,探讨了其技术先进性、训练过程及行业影响。首先介绍DeepSeek的快速崛起及其对AI行业的颠覆作用。DeepSeek通过强化学习(RL)实现Time Scaling Law的新范式,突破了传统大模型依赖算力和数据的限制,展现了集成式创新的优势。文章还提到开源的重要性以及数据作为制胜法宝的关键地位,同时警示了业务发展中安全滞后的问题。
很多平台类应用或系统(如电商CRM平台、仓库订单平台等等),它们的服务模型是围绕用户维度(这里的用户维度可以是一个卖家或品牌,可以是一个仓库,等等)展开的。因此,这类型的平台业务,为了支持业务系统的水平扩展性,业务的数据库通常是按用户维度进行水平切分。
本文介绍PolarDB-X数据库实现了基于标签的访问控制功能,可以在行、列级别对数据访问进行控制,精细化的限制用户对数据的访问和操作,保证了读写数据的安全。下文根据实际应用场景,介绍PolarDB-X的LBAC功能设计以及使用方法。
本文将从使用的角度出发,来更详细的展示一下流存储的场景,看看它和业务消息的场景有哪些区别。 RocketMQ 5.0 面向流存储的场景,提供了哪些特性。再结合两个数据集成的案例,来帮助大家了解流存储的用法。
聚焦在Buffer Pool的本职功能上,从其提供的接口、内存组织方式、Page获取、刷脏等方面进行介绍
论文提出的Flux通过使用AI技术将短时和长时查询解耦进行自动弹性,解决了云数据仓库的性能瓶颈,同时支持了资源按需预留。Flux优于传统的方法,查询响应时间 (RT) 最多可减少75%,资源利用率提高19.0%,成本开销降低77.8%。
本文旨在提供一个指导性的框架,帮助用户了解插件的安装、配置以及探索如何通过 Grafana 内的阿里云 OpenAPI 插件来对云上数据进行可视化和快速验证开发原型,加强数据可视化和云监控能力,助力开发速度。