本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。
本文介绍了 Kubernetes 中的容器工作内存(WorkingSet)概念,它用于表示容器内存的实时使用量,尤其是活跃内存。
当前,大多数面向 Golang 应用的监控能力主要是通过 SDK 方式接入,需要开放人员手动进行埋点,会存在一定问题。对此,可观测 Go Agent 应运而生。本文介绍的阿里云可观测 Go Agent 方案,能通过无侵入的方式实现应用监控能力。
唯一不变的是变化,在现代复杂的商业环境中,企业的业务形态与规模往往处于不断变化和扩大之中。这种动态发展对企业的信息系统提出了更高的要求,特别是在软件架构方面。为了应对不断变化的市场需求和业务扩展,软件架构必须进行相应的演进和优化。网关作为互联网流量的入口,其形态也在跟随软件架构持续演进迭代中。我们下面就聊一聊网关的演进历程以及在时下火热的 AI 浪潮下,网关又会迸发怎样新的形态。
通过阿里云云原生 API 网关在国泰落地,目前国泰所有访问大模型的流量均通过阿里云云原生 API 网关进行代理,在日均消耗近亿 Token 的同时,做到了对每个请求都进行敏感信息过滤,不论是输入大模型的内容还是由大模型产生的内容都进行了全面审计,大大降低使用大模型的数据安全风险。通过网关的 AI 插件,国泰产险做到了每个 Token 都知道是谁在用,用在哪个场景,给后续分析和成本管控提供了坚实的数据支撑。
本文讨论了微服务上云过程中的稳定性挑战,特别是变更引起的生产故障。阿里云MSE(微服务引擎)提供了一种全链路无损发布方案,旨在消除变更风险,实现白天流量高峰时的安全发布。
这篇文章旨在提供技术深度和实践指南,帮助开发者理解并应用这项创新技术来提高Golang应用的监控与服务治理能力。在接下来的部分,我们将通过一些实际案例,进一步展示如何在不同场景中应用这项技术,提供更多实践启示。
超算快速弹性伸缩场景下,如何构建一套准确、快速、可靠的监控体系成为关键点。阿里云在超算场景的主机监控落地实践,解决超算场景面临的挑战,交付一套可靠和全面的主机监控体系。
随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。