在近来发生的 DeepSeek 遭遇的安全事件中,我们可以看到当前人工智能行业在网络安全方面的脆弱性,同时也为业界敲响了警钟。唯有通过全行业的协同努力,加强整体、完善的网络安全可观测建设,才能为 AI 技术的创新和发展构建一个安全而稳固的环境。我们期盼并相信,在攻克这些网络安全难题之后,AI 创新将迎来更加安全、灿烂的未来。
本文主要介绍了云原生安全的现状以及企业应用在云原生化转型中面临的主要安全挑战以及相对成熟的一部分安全体系方法论,深度解析企业云原生 DevSecOps 体系构建。
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
当前,大多数面向 Golang 应用的监控能力主要是通过 SDK 方式接入,需要开放人员手动进行埋点,会存在一定问题。对此,可观测 Go Agent 应运而生。本文介绍的阿里云可观测 Go Agent 方案,能通过无侵入的方式实现应用监控能力。
ARMS RUM 是阿里云应用实时监控服务(ARMS)下的用户体验监控(RUM)产品,覆盖 Web/H5、各类平台小程序、Android、iOS、Flutter、ReactNative、Windows、macOS 等平台框架。接入 SDK 后会主动采集端侧页面性能、资源加载、API 调用、异常崩溃、卡顿、用户操作、系统信息等数据,还支持事件、日志、异常等数据按需自定义上报以满足业务数据分析需求,提供全面的性能分析、异常分析、产品分析、会话分析能力,帮助快速跟踪定位问题原因,提升产品用户使用体验。
本文带大家了解一下如何使用阿里云Serverless计算产品函数计算构建生产级别的LLM Chat应用。该最佳实践会指导大家基于开源WebChat组件LobeChat和阿里云函数计算(FC)构建企业生产级别LLM Chat应用。实现同一个WebChat中既可以支持自定义的Agent,也支持基于Ollama部署的开源模型场景。
DeepSeek 凭借其卓越的性能和广泛的应用场景,迅速在全球范围内获得了极高的关注度和广泛的用户基础。DeepSeek-R1-Distill 是使用 DeepSeek-R1 生成的样本对开源模型进行蒸馏得到的小模型,拥有更小参数规模,推理成本更低,基准测试同样表现出色。依托于函数计算 FC 算力,Serverless+ AI 开发平台 CAP 现已提供模型服务、应用模版两种部署方式辅助您部署 DeepSeek R1 系列模型。完成模型部署后,您即可与模型进行对话体验;或以 API 形式进行调用,接入 AI 应用中。欢迎您立即体验。
基于 Stable Diffusion Serverless API 解决方案搭建 AI 文字生成应用,支持并发出图。