检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
本文核心观点: • 基于大模型的 AI 原生应用将越来越多,容器和微服务为代表的云原生技术将加速渗透传统业务。 • API 是 AI 原生应用的一等公民,并引入了更多流量,催生企业新的生命力和想象空间。 • AI 原生应用对网关的需求超越了传统的路由和负载均衡功能,承载了更大的 AI 工程化使命。 • AI Infra 的一致性架构至关重要,API 网关、消息队列、可观测是 AI Infra 的重要组成。
Spring Cloud Alibaba 发布了 Scheduling 任务调度模块 [#3732]提供了一套开源、轻量级、高可用的定时任务解决方案,帮助您快速开发微服务体系下的分布式定时任务。
本文第一部分先介绍 AIGC 对软件研发的根本性影响,从宏观上介绍当下的趋势;第二部分将介绍 Copilot 模式,第三部分是未来软件研发 Agent 产品的进展。
本文介绍了 GraalVM 静态编译技术在云原生环境下的应用:ARMS 发布了支持 GraalVM 应用的 Java Agent 探针,可为 GraalVM 应用提供开箱即用的可观测能力。同时,文章还提供了使用 ARMS 对 GraalVM 应用进行可观测的详细步骤。
基于原始的阿里云计算平台产技文档,搭建一套基于大模型检索增强答疑机器人。本方案已在阿里云线上多个场景落地,将覆盖阿里云官方答疑群聊、研发答疑机器人、钉钉技术服务助手等。线上工单拦截率提升10+%,答疑采纳率70+%,显著提升答疑效率。
相对于传统软件研发,微服务架构下典型的需求交付最大的区别在于有了能够小范围真实验证的机制,且交付单位较小,风险可控,灰度发布可以弥补线下测试的不足。本文从 DevOps 视角概述灰度发布实践,介绍如何将灰度发布与 DevOps 工作融合,快来了解吧~
在 Data + AI 时代,随着大数据分析和 AI/ML 工作负载的进一步融合,对象存储 OSS 作为面向 AI 时代的数据基础设施,迎来了新的挑战与创新机遇。本话题我们将会介绍对象存储的能力创新,深度解读对象存储在实现稳定、安全、高性能和低成本背后的技术进展,并展望未来 AI 驱动趋势下的技术发展方向。