在本文中,我们将深入探讨为何选择 iLogtail,以及它在 SPL 数据处理方面相较于 Logstash 有何独特优势。通过对比这两款工具的架构、性能以及功能,我们希望能够揭示 iLogtail 如何在日益复杂的日志处理需求中脱颖而出,帮助您做出明智的技术选择。
在系统开发、运维过程中,日志是最重要的信息之一,其最大的优点是简单直接。SLS 数据加工功能旨在解决非结构化的日志数据处理,当前全面升级,集成 SPL 语言、更强的数据处理性能、更优的使用成本。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
本文提供一种相对Sidecar部署更轻量级的采集方式,只需要部署少量的Logtail容器,即可采集不同业务容器的日志。
SLS性能持续分析基于开放的接入生态与持续性能分析的理念所构建(开放接入部分已在iLogtail开源),基于SLS 性能持续分析,将为广大开发者提供开箱即用、一站式的的性能观测体验,助力开发者轻松面对多云、多Region、多版本、微服务等场景下的性能分析需求。
好的单元测试不仅可以验证代码结构设计的是否合理,而且可以提前发现代码中的漏洞,将线上风险扼杀在摇篮中。本文从常用的单元测试框架出发,对Mockito框架深入浅出的讲解,希望能帮到每一位同学。