在本文中,我们将深入探讨为何选择 iLogtail,以及它在 SPL 数据处理方面相较于 Logstash 有何独特优势。通过对比这两款工具的架构、性能以及功能,我们希望能够揭示 iLogtail 如何在日益复杂的日志处理需求中脱颖而出,帮助您做出明智的技术选择。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
本文总结了作者在日常/大促业务的“敏捷”开发过程中产生的疑惑,并尝试做出思考得到一些解决思路和方案。在前端开发和实践过程中,梳理了一些简单设计方案可以缓解当时 “头疼” 的几个敏捷迭代问题,并实践在项目迭代中。
在系统开发、运维过程中,日志是最重要的信息之一,其最大的优点是简单直接。SLS 数据加工功能旨在解决非结构化的日志数据处理,当前全面升级,集成 SPL 语言、更强的数据处理性能、更优的使用成本。
本文为 iLogtail 开源两周年的实践案例分享,讨论了 iLogtail 作为日志采集工具的优势,包括它在性能上超越 Filebeat 的能力,并通过一系列优化解决了在生产环境中替换 Filebeat 和 Logstash 时遇到的挑战。
本文对海外泼天流量现状做了快速整理,旨在抛砖引玉,促进国内企业在出海过程中,交流如何构建全球化技术架构的落地经验,相信会有越来越多资深人士分享更深层次的实践。