相较于 AliyunLogConfig,AliyunPipelineConfig 在配置格式、行为逻辑上做了很大改进,主打灵活、简单、稳定。点击本文,手把手教你如何配置 AliyunPipelineConfig,欢迎大家使用~
本文分享了AI场景下面临的数据处理与检索挑战及解决方案。AI内容生产涉及数据准备、模型训练、推理及应用四大环节,其中数据准备环节面临数据来源复杂、格式多样及数据量激增的挑战,模型训练环节需解决推理准确性问题,AI应用环节则需克服接口兼容性难题。 为应对这些挑战,阿里云存储OSS与智能媒体管理IMM提供百余种数据处理能力,并升级数据索引功能支持向量检索,助力构建多模态检索应用。此外,还介绍了Serverless数据处理方案,可日均处理百亿级别文件,通过OSS数据索引能力,客户能快速构建RAG检索增强,同时实现多模态检索的搭建,显著提升AI应用的效能和用户体验。
本文为 iLogtail 开源两周年的实践案例分享,讨论了 iLogtail 作为日志采集工具的优势,包括它在性能上超越 Filebeat 的能力,并通过一系列优化解决了在生产环境中替换 Filebeat 和 Logstash 时遇到的挑战。
YODA(Yitian Optimal Development Assistant,倚天应用迁移工具)旨在帮助用户更加高效、便捷地实现跨平台、跨结构下的应用迁移,大幅度缩短客户在新平台上端到端性能验证所需的人力和时间,使得客户更加专注于应用本身算法的优化,协同客户实现降本增效。
对象存储OSS作为云上数据湖,被广泛应用在商业智能、数据决策、广告推荐等大数据分析的场景上。随着AI workload的不断增长,OSS数据湖也在随着workload的变化不断演进。
本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。
在当今 GPT 技术盛行的时代,大模型推动了向量检索技术的迅猛发展。向量检索相较于传统的基于关键词的检索方法,能够更精准地捕捉数据之间的语义关系,极大提升了信息检索的效果。特别是在自然语言处理、计算机视觉等领域,向量能够将不同模态的数据在同一空间中进行表达和检索,推动了智能推荐、内容检索、RAG 和知识库等应用的广泛普及。阿里云表格存储(Tablestore)的多元索引提供了向量检索能力。表格存储是一款 Serverless 的分布式结构化数据存储服务,诞生于 2009 年阿里云成立时,主要特点是分布式、Serverless 开箱即用、按量付费、水平扩展和查询功能丰富和性能优秀等。