复杂的运行环境、巨大的部署量和高速发展业务迭代对 Agent 的软件工程质量带来了巨大挑战。基于阿里云可观测团队多年的开发和运维经验,本文将分享如何构建和执行可靠性工程策略。
本文分享了AI场景下面临的数据处理与检索挑战及解决方案。AI内容生产涉及数据准备、模型训练、推理及应用四大环节,其中数据准备环节面临数据来源复杂、格式多样及数据量激增的挑战,模型训练环节需解决推理准确性问题,AI应用环节则需克服接口兼容性难题。 为应对这些挑战,阿里云存储OSS与智能媒体管理IMM提供百余种数据处理能力,并升级数据索引功能支持向量检索,助力构建多模态检索应用。此外,还介绍了Serverless数据处理方案,可日均处理百亿级别文件,通过OSS数据索引能力,客户能快速构建RAG检索增强,同时实现多模态检索的搭建,显著提升AI应用的效能和用户体验。
本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。
本文主要介绍如何使用CloudLens for SLS定位和解决iLogtail日常使用中的常见问题之一:iLogtail异常重启问题。
本文为 iLogtail 开源两周年的实践案例分享,讨论了 iLogtail 作为日志采集工具的优势,包括它在性能上超越 Filebeat 的能力,并通过一系列优化解决了在生产环境中替换 Filebeat 和 Logstash 时遇到的挑战。
流量回放技术在性能测试和故障排除中至关重要。传统工具如 GoReplay、Tcpreplay 等存在高权限、配置复杂、登录态失效等痛点。PTS 推出基于 Access Log 的流量回放功能,自动生成压测场景,解决传统工具痛点,操作简单,一起来了解下吧~
本文介绍了如何利用阿里云资源编排服务(ROS)的云开发套件(CDK)将2048小游戏部署到云端。ROS CDK允许开发者使用编程语言定义和管理云资源,简化部署流程。通过部署示例,展示了从环境准备、依赖安装到资源栈的创建与删除全过程。借助ECS等云服务,实现游戏快速上线,使更多玩家享受游戏乐趣。