近日,2024云栖大会现场,阿里云宣布对其存储服务进行全面升级,围绕 Storage for AI 与 AI in Storage 两大领域,提出“4 Any + 3 AI ”的升级方向,揭示存储基础设施与AI的双向赋能路径。阿里云存储产品将支持更多AI业务高效创新, 同时 AI 技术也将助力基础设施迭代,支持企业更好地管理数据资产。
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
软件系统有三个追求:高性能、高并发、高可用,俗称三高。本篇讨论高并发,从高并发是什么到高并发应对的策略、缓存、限流、降级等。
随着业务和产品的发展、团队的不断扩大,很多团队都不可避免的会遇到需求流程混乱的问题。虽然有的团队也编写了一些“需求流程规范”的文档,但最终却流于纸面,难以在团队真正落地。如何科学制定并有效落实需求管理规范呢?对此,云效产品经理陈逊进行了非常详细的直播分享,本文是他经验的文字总结。
在 Data + AI 时代,随着大数据分析和 AI/ML 工作负载的进一步融合,对象存储 OSS 作为面向 AI 时代的数据基础设施,迎来了新的挑战与创新机遇。本话题我们将会介绍对象存储的能力创新,深度解读对象存储在实现稳定、安全、高性能和低成本背后的技术进展,并展望未来 AI 驱动趋势下的技术发展方向。
在单体的应用开发场景中涉及并发同步时,大家往往采用Synchronized(同步)或同一个JVM内Lock机制来解决多线程间的同步问题。而在分布式集群工作的开发场景中,就需要一种更加高级的锁机制来处理跨机器的进程之间的数据同步问题,这种跨机器的锁就是分布式锁。接下来本文将为大家分享分布式锁的最佳实践。
历经 15 载,如今的飞天盘古系统已迭代至第三代,数千万行代码和 1,000 余项专利,从大规模、到高性能、到高效能的分布式存储系统的演进,更高效地让数据中心成为一台计算机。
研发规范的目标,是为了解决或降低出现软件危机的风险。但传统流水线受限于工具的定位,无法解决研发规范的落地问题,需要在更高的层面来解决。阿里云云效团队经过内部启发后推出的新产品:云效应用交付平台 AppStack 给出了解决方案,快来使用体验吧!