本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。
本文为数据库「拥抱Data+AI」系列连载第1篇,该系列是阿里云瑶池数据库面向各行业Data+AI应用场景,基于真实客户案例&最佳实践,展示Data+AI行业解决方案的连载文章。本篇内容针对电商行业痛点,将深入探讨如何利用数据与AI技术以及数据分析方法论,为电商行业注入新的活力与效能。
SQL 作为 SLS 基础功能,每天承载了用户大量日志数据的分析请求,既有小数据量的快速查询(如告警、即席查询等);也有上万亿数据规模的报表级分析。SLS 作为 Serverless 服务,除了要满足不同用户的各类需求,还要兼顾性能、隔离性、稳定性等要求。过去一年多的时间,SLS SQL 团队做了大量的工作,对 SQL 引擎进行了全新升级,SQL 的执行性能、隔离性等方面都有了大幅的提升。
本文从“空间”这一维度,聊一聊PolarDB-X在跨空间部署能力上的不断发展和延伸,以及在不同空间范围下的高可用和容灾能力,并着重介绍一下最新的产品能力——GDN(Global Database Network)。
本篇文章针对B站在运营场景中的痛点,深入探讨如何利用阿里云Data+AI解决方案实现智能问数服务,赋能平台用户和运营人员提升自助取数和分析能力,提高价值交付效率的同时为数据平台减负。
PolarDB-X 作为PolarDB分布式版,是阿里巴巴自主设计研发的高性能云原生分布式数据库产品,采用 Shared-nothing 与存储分离计算架构,支持集中式和分布式一体化形态,具备金融级数据高可用、分布式水平扩展、混合负载、低成本存储和极致弹性等能力,坚定以兼容MySQL开源生态构建分布式能力,为用户提供高吞吐、大存储、低延时、易扩展和超高可用的云时代数据库服务。