本文中我们分析了 什么 是 “流”,对比了 Java 上几种常见的 “流”库,引入和详细介绍了 Java 22 中的 Stream Gather API 。同时也简单分享了利用虚拟线程 如何简化 Stream map Concurrent操作符的实现。希望抛砖引玉和大家分享新的特性,共同进步。同时也希望大家都可以升级到新版本的 JDK,更好的赋能业务。
随着企业对云服务的广泛应用,数据安全成为重要课题。通过对云上数据进行敏感数据扫描和保护,可以有效提升企业或组织的数据安全。本文主要基于阿里云的数据安全中心数据识别功能进行深入实践探索。通过对商品购买日志的模拟,分析了如何使用阿里云的工具对日志数据进行识别、脱敏(3 种模式)处理和基于 StoreView 的查询脱敏方式,从而在保障数据安全的同时满足业务需求。通过这些实践,企业可以有效降低数据泄漏风险,提升数据治理能力和系统安全性。
PolarDB-X 作为PolarDB分布式版,是阿里巴巴自主设计研发的高性能云原生分布式数据库产品,采用 Shared-nothing 与存储分离计算架构,支持集中式和分布式一体化形态,具备金融级数据高可用、分布式水平扩展、混合负载、低成本存储和极致弹性等能力,坚定以兼容MySQL开源生态构建分布式能力,为用户提供高吞吐、大存储、低延时、易扩展和超高可用的云时代数据库服务。
本文介绍的实现方式属于应用级限制,应用级限流方式只是单应用内的请求限流,不能进行全局限流。要保证系统的抗压能力,限流是一个必不可少的环节,虽然可能会造成某些用户的请求被丢弃,但相比于突发流量造成的系统宕机来说,这些损失一般都在可以接受的范围之内。
SLS性能持续分析基于开放的接入生态与持续性能分析的理念所构建(开放接入部分已在iLogtail开源),基于SLS 性能持续分析,将为广大开发者提供开箱即用、一站式的的性能观测体验,助力开发者轻松面对多云、多Region、多版本、微服务等场景下的性能分析需求。
PolarDB已经成为小鹏汽车应对TB级别大表标注、分析查询的"利器"。
PolarDB-X 分布式数据库,采用集中式和分布式一体化的架构,为了能够灵活应对混合负载业务,作为数据存储的 Data Node 节点采用了多种数据结构,其中使用行存的结构来提供在线事务处理能力,作为 100% 兼容 MySQL 生态的数据库,DN 在 InnoDB 的存储结构基础上,进行了深度优化,大幅提高了数据访问的效率。
作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。