复杂的运行环境、巨大的部署量和高速发展业务迭代对 Agent 的软件工程质量带来了巨大挑战。基于阿里云可观测团队多年的开发和运维经验,本文将分享如何构建和执行可靠性工程策略。
本文分享了AI场景下面临的数据处理与检索挑战及解决方案。AI内容生产涉及数据准备、模型训练、推理及应用四大环节,其中数据准备环节面临数据来源复杂、格式多样及数据量激增的挑战,模型训练环节需解决推理准确性问题,AI应用环节则需克服接口兼容性难题。 为应对这些挑战,阿里云存储OSS与智能媒体管理IMM提供百余种数据处理能力,并升级数据索引功能支持向量检索,助力构建多模态检索应用。此外,还介绍了Serverless数据处理方案,可日均处理百亿级别文件,通过OSS数据索引能力,客户能快速构建RAG检索增强,同时实现多模态检索的搭建,显著提升AI应用的效能和用户体验。
本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。
ADB MySQL的Compaction Service功能通过将Compaction任务从存储节点解耦至独立的弹性资源池执行,解决了资源隔离性弱、并发度低等问题,实现了资源消耗降低50%,任务执行时间平均减少40%,并支持按量付费,提升了系统的稳定性和成本效益。
本文介绍通过 AnalyticDB PostgreSQL 版基于实时物化视图,构建流批一体的一站式实时数仓解决方案,实现一套系统、一份数据、一次写入,即可在数仓内完成实时数据源头导入到实时分析全流程。
PolarDB Serverless如何在0.5秒内实现跨机迁移?
PolarDB已经成为小鹏汽车应对TB级别大表标注、分析查询的"利器"。
阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比
本文为 iLogtail 开源两周年的实践案例分享,讨论了 iLogtail 作为日志采集工具的优势,包括它在性能上超越 Filebeat 的能力,并通过一系列优化解决了在生产环境中替换 Filebeat 和 Logstash 时遇到的挑战。