本系列文章将围绕东南亚头部科技集团的真实迁移历程展开,逐步拆解 BigQuery 迁移至 MaxCompute 过程中的关键挑战与技术创新。本篇为第六篇,MaxCompute SQL语法及函数功能增强。 注:客户背景为东南亚头部科技集团,文中用 GoTerra 表示。
区别于传统的流水线工具,本实验将带你体验云效应用交付平台 AppStack,从应用视角,完成一个 AI 聊天应用的高效交付。
本文以DeepSeek模型为核心,探讨了其技术先进性、训练过程及行业影响。首先介绍DeepSeek的快速崛起及其对AI行业的颠覆作用。DeepSeek通过强化学习(RL)实现Time Scaling Law的新范式,突破了传统大模型依赖算力和数据的限制,展现了集成式创新的优势。文章还提到开源的重要性以及数据作为制胜法宝的关键地位,同时警示了业务发展中安全滞后的问题。
很多平台类应用或系统(如电商CRM平台、仓库订单平台等等),它们的服务模型是围绕用户维度(这里的用户维度可以是一个卖家或品牌,可以是一个仓库,等等)展开的。因此,这类型的平台业务,为了支持业务系统的水平扩展性,业务的数据库通常是按用户维度进行水平切分。
本文介绍PolarDB-X数据库实现了基于标签的访问控制功能,可以在行、列级别对数据访问进行控制,精细化的限制用户对数据的访问和操作,保证了读写数据的安全。下文根据实际应用场景,介绍PolarDB-X的LBAC功能设计以及使用方法。
聚焦在Buffer Pool的本职功能上,从其提供的接口、内存组织方式、Page获取、刷脏等方面进行介绍
在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。
越来越多的企业在数字化转型和上云进程中选择混合云的形态(云+自建IDC或云+其他厂商云)来进行容灾建设,一方面不会过度依赖单一云厂商,另一方面还能充分利用已有的线下IDC资源。MSHA云原生多活容灾解决方案,支持混合云多活容灾产品能力。本文会通过一个业务Demo案例,介绍混合云容灾建设的难点,以及如何基于MSHA来快速搭建应用双活架构并具备分钟级业务恢复能力。