官方博客-第14页-阿里云开发者社区

  • 2024-05-15
    307

    长路漫漫, 从Blink-tree 到Bw-tree (上)

    在前面的文章 路在脚下, 从BTree 到Polar Index中提到, 我们已经将InnoDB 里面Btree 替换成Blink Tree, 高并发压力下, 在标准的TPCC 场景中最高能够有239%的性能提升, 然后我们对InnoDB 的file space模块也进行了优化, 在分配新pag...

    307
  • 2024-05-15
    449

    如何“多快好省”地使用阿里云产品实现数据下载加速

    阿里云CDN下载加速解决方案旨在通过全球调度中心智能化地将客户端的下载请求精准调度到分布于全球的最优CDN边缘节点,同时依托海量带宽储备及强大的CDN控制逻辑让企业省心省力地为用户带来极速下载体验,助力企业获得更大的市场回报。

    449
  • 2024-05-15
    166

    基于日志服务实现PolarDB秒级监控告警实践

    数据复用场景。SLS统一平台利用一份数据发掘出多个use case,让数据发挥其最大价值。

    166
  • 2024-05-15
    376

    Lindorm:时序数据“存、算、管、用”的最佳实践

    本文档介绍Lindorm时序引擎在时序数据的存储、计算、管理、应用上的最佳实践。

    376
  • 2024-05-15
    292

    PolarDB-X用15M内存跑1G的TPCH

    在数据时代,过多耗内存的大查询都有可能压垮整个集群,所以其内存管理模块在整个系统中扮演着非常重要的角色。而PolarDB-X 作为一款分布式数据库,其面对的数据可能从TB到GB字节不等,同时又要支持TP和AP Workload,要是在计算过程中内存使用不当,不仅会造成TP和AP相互影响,严重拖慢响应时间,甚至会出现内存雪崩、OOM问题,导致数据库服务不可用。CPU和MEMORY相对于网络带宽比较昂贵,所以PolarDB-X 代价模型中,一般不会将涉及到大量数据又比较耗内存的计算下推到存储DN,DN层一般不会有比较耗内存的计算。这样还有一个好处,当查询性能低的时候,无状态的CN节点做弹性扩容代价相对于DN也低。鉴于此,所以本文主要对PolarDB-X计算层的内存管理进行分析,这有助于大家有PolarDB-X有更深入的理解。

    292
  • 2024-05-15
    291

    真·异地多活架构的实现用PolarDB-X

    今天我们这篇文章重点来说一下,对于一个分布式数据库,在异地多活架构中,起到了一个什么样的角色;对于其中的问题,解法是什么。

    291
  • 2024-05-15
    407

    PolarDB-X 热点优化系列 (一):如何支持淘宝库存热点更新

    本文主要介绍PolarDB-X中支持热点行的优化思路和基本使用。

    407
  • 2024-05-15
    266

    ADBPG优化基础(二)SQL优化

    承接上一篇,这次跟大家分享一些与SQL优化相关的经验,希望能够帮助大家了解如果更有效率的使用ADBPG数据库。ADBPG数据库使用基于成本(cost-based)的优化器,像其他的数据库一样,在生成计划时会考虑联接表行数、索引、相关字段基数等因素,除此之外,优化器还会考虑数据所在的segment节点...

    266
  • 2024-05-15
    567

    DB2下移分布式数据库OceanBase单元化重构最佳实践

    DB2下移分布式数据库OceanBase单元化重构最佳实践。

    567
  • 1
    ...
    13
    14
    15
    ...
    18
    到第
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    14/18