为了构建现代化的可观测数据采集器LoongCollector,iLogtail启动架构通用化升级,旨在提供高可靠、高可扩展和高性能的实时数据采集和计算服务。然而,通用化的过程总会伴随性能劣化,本文重点介绍LoongCollector的性能优化之路,并对通用化和高性能之间的平衡给出见解。
日志内容本身是一种重要信息,日志之间的相对顺序也是因果关系的一种反映,某些场景下如果日志内容完全相同,但是日志间的顺序错乱了反映出来的结果可能和真实世界里面的事件完全相反。
本文主要介绍阿里云 Serverless 应用引擎如何帮助企业跨越技术鸿沟,从传统应用架构无感升级到 Serverless 架构,以更高效、更经济的方式进行转型,快速进入云原生快车道,让 2 人的研发团队享受 2000 人技术团队的红利。
在日常的开发工作中,为了程序的健壮性,大部分方法都需要进行入参数据校验。本文围绕作者如何优雅的进行参数校验展开讨论。
阿里云函数计算与 NVIDIA TensorRT/TensorRT-LLM 展开合作,通过结合阿里云的无缝计算体验和 NVIDIA 的高性能推理库,开发者能够以更低的成本、更高的效率完成复杂的 AI 任务,加速技术落地和应用创新。
小熊油耗在进行架构升级时,进行了广泛的市场调研,深入分析了国内多家云服务商。经过对比多种 IaaS 层云主机方案及 Serverless 产品的部署策略,他们最终选择了阿里云Serverless 应用引擎 SAE。小熊油耗认为,阿里云能给他们提供更强的安全感,安全感来自于阿里云是一个更大的平台:历史最悠久,用户最多、产品最丰富、配套工具众多、技术支持体系成熟,阿里云 SAE,不仅在稳定性上表现卓越,在细粒度的成本控制和极致的弹性能力上表现也非常出色,而且免运维,完美契合了小熊油耗作为一家细分领域小而美的公司的需求。
随着云计算和人工智能(AI)技术的飞速发展,企业对于高效、灵活且成本效益高的解决方案的需求日益增长。本文旨在探讨 Serverless 架构与 AI 技术的结合,如何通过 Serverless 函数计算和 AI 开发平台,助力企业简化应用开发流程,减少企业 AI 业务试错成本,加速业务创新,为企业业务发展提供无限可能。
SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。