SLS 全新推出的「SQL 完全精确」模式,通过“限”与“换”的策略切换,在快速分析与精确计算之间实现平衡,满足用户对于超大数据规模分析结果精确的刚性需求。标志着其在超大规模日志数据分析领域再次迈出了重要的一步。
本文探讨了如何高效、经济且可靠地将海外应用与基础设施日志统一采集至阿里云日志服务(SLS),解决全球化业务扩展中的关键挑战。重点介绍了高性能日志采集Agent(iLogtail/LoongCollector)在海外场景的应用,推荐使用LoongCollector以获得更优的稳定性和网络容错能力。同时分析了多种网络接入方案,包括公网直连、全球加速优化、阿里云内网及专线/CEN/VPN接入等,并提供了成本优化策略和多目标发送配置指导,帮助企业构建稳定、低成本、高可用的全球日志系统。
PromQL AI 智能体上线。本文将从自然语言生成 PromQL 实践视角,探讨如何构建知识库、与大模型进行交互、最终生成符合需求的 PromQL 语句。本文还介绍了在 MCP 和云监控控制台下使用 AI 智能体的用例。
本篇文章通过几个技术点说明日志记录过程中的性能实践,计算机领域的性能往往都遵循着冰山法则,即你能看得见的、程序员能感知的只是其中的一小部分,还有大量的细节隐藏在冰山之下。
本文主要介绍阿里云 Serverless 应用引擎如何帮助企业跨越技术鸿沟,从传统应用架构无感升级到 Serverless 架构,以更高效、更经济的方式进行转型,快速进入云原生快车道,让 2 人的研发团队享受 2000 人技术团队的红利。
本文将AI项目与Serverless架构进行结合,在Serverless架构下用20行Python代码搞定图像分类和预测。