官方博客-第11页-阿里云开发者社区

  • 2024-08-06
    1493

    AnalyticDB for MySQL:AI时代实时数据分析的最佳选择

    阿里云云原生数据仓库AnalyticDB MySQL(ADB-M)与被OpenAI收购的实时分析数据库Rockset对比,两者在架构设计上有诸多相似点,例如存算分离、实时写入等,但ADB-M在多个方面展现出了更为成熟和先进的特性。ADB-M支持更丰富的弹性能力、强一致实时数据读写、全面的索引类型、高吞吐写入、完备的DML和Online DDL操作、智能的数据生命周期管理。在向量检索与分析上,ADB-M提供更高检索精度。ADB-M设计原理包括分布式表、基于Raft协议的同步层、支持DML和DDL的引擎层、高性能低成本的持久化层,这些共同确保了ADB-M在AI时代作为实时数据仓库的高性能与高性价比

    1,493
  • 2024-08-12
    8185

    敦煌智旅:Serverless 初探,运维提效 60%

    SAE 提供了一个开箱即用的 Serverless PaaS 平台,提供了微服务、监控等能力,帮助敦煌智旅很好地解决了发版困难、运维困难、弹性能力不足和资源利用率低等痛点问题。成功实现轻松应对 10 倍突增流量洪峰,运维效率大幅提升。

    8,185
  • 839

    7倍性能提升|阿里云AnalyticDB Spark向量化能力解析

    AnalyticDB Spark如何通过向量化引擎提升性能?

  • 2024-09-03
    390

    MySQL 8.0:filesort 性能退化的问题分析

    用户将 RDS MySQL 实例从 5.6 升级到 8.0 后,发现相同 SQL 的执行时间增长了十几倍。本文就该问题逐步展开排查,并最终定位根因。

    390
  • 2024-11-01
    1067

    Serverless GPU:助力 AI 推理加速

    近年来,AI 技术发展迅猛,企业纷纷寻求将 AI 能力转化为商业价值,然而,在部署 AI 模型推理服务时,却遭遇成本高昂、弹性不足及运维复杂等挑战。本文将探讨云原生 Serverless GPU 如何从根本上解决这些问题,以实现 AI 技术的高效落地。

  • 2025-01-20
    633

    聊一聊日志背后的抽象

    本文从思考日志的本质开始,一览业界对日志使用的最佳实践,然后尝试给出分布式存储场景下对日志模块的需求抽象,最后是技术探索路上个人的一点点感悟。

    633
  • 2025-03-06
    1335

    一篇关于DeepSeek模型先进性的阅读理解

    本文以DeepSeek模型为核心,探讨了其技术先进性、训练过程及行业影响。首先介绍DeepSeek的快速崛起及其对AI行业的颠覆作用。DeepSeek通过强化学习(RL)实现Time Scaling Law的新范式,突破了传统大模型依赖算力和数据的限制,展现了集成式创新的优势。文章还提到开源的重要性以及数据作为制胜法宝的关键地位,同时警示了业务发展中安全滞后的问题。

    1,335
  • 2025-03-21
    1309

    AI 推理场景的痛点和解决方案

    一个典型的推理场景面临的问题可以概括为限流、负载均衡、异步化、数据管理、索引增强 5 个场景。通过云数据库 Tair 丰富的数据结构可以支撑这些场景,解决相关问题,本文我们会针对每个场景逐一说明。

    1,309
  • 2025-04-24
    248

    快速定位进程性能瓶颈

    这篇文章详细介绍了进程热点追踪的概念、业务痛点、解决方案以及实际案例分析,旨在帮助开发者和运维人员快速定位和解决系统性能瓶颈问题。

  • 1
    ...
    10
    11
    12
    ...
    27
    到第
    11/27