阿里巴巴开发工程师,Apache Flink Committer 任庆盛,在 9 月 24 日 Apache Flink Meetup 的分享。
本文深入解析了Model Context Protocol(MCP)协议,探讨其在AI领域的应用与技术挑战。MCP作为AI协作的“USB-C接口”,通过标准化数据交互解决大模型潜力释放的关键瓶颈。文章详细分析了MCP的生命周期、传输方式(STDIO与SSE),并提出针对SSE协议不足的优化方案——MCP Proxy,实现从STDIO到SSE的无缝转换。同时,函数计算平台被推荐为MCP Server的理想运行时,因其具备自动弹性扩缩容、高安全性和按需计费等优势。最后,展望了MCP技术演进方向及对AI基础设施普及的推动作用,强调函数计算助力MCP大规模落地,加速行业创新。
通义灵码Project Rules是一种针对AI代码生成的个性化规则设定工具,旨在解决AI生成代码不精准或不符合开发者需求的问题。通过定义编码规则(如遵循SOLID原则、OWASP安全规范等),用户可引导模型生成更符合项目风格和偏好的代码。例如,在使用阿里云百炼服务平台的curl调用时,通义灵码可根据预设规则生成Java代码,显著提升代码采纳率至95%以上。此外,还支持技术栈、应用逻辑设计、核心代码规范等多方面规则定制,优化生成代码的质量与安全性。
阿里云PAI推出PAIFuser框架,专为视频生成模型设计,通过模型并行、量化优化、稀疏运算等技术,显著提升DiT架构的训练与推理效率。实测显示,推理耗时最高降低82.96%,训练时间减少28.13%,助力高效低成本AI视频生成。
bpftrace是一个内核跟踪工具,简单来说就是在函数上挂个钩子,挂上钩子后就可以将函数的入参和返回值取出来再放入程序进行二次编程,最终能让程序按照我们的意图来对函数进行观测。
一站式实时数仓Hologres整体能力介绍—2024实时数仓Hologres公开课 01