本文分享了如何利用阿里云的存储解决方案构建一个具备高效处理、高时效性的AI数据湖,通过高吞吐训练和高效推理帮助企业快速实现数据价值,以及用户在使用中的最佳实践。
该文档详细介绍了阿里云一键部署和手动部署多媒体数据存储与分发方案的步骤。一键部署通过资源编排服务(ROS)实现自动化,涵盖注册账号、开通服务、创建OSS Bucket、配置CDN加速及绑定IMM等功能,简化了复杂操作。手动部署则更细致地展示了每个配置环节,包括网络规划、资源创建、域名绑定、CDN配置、证书加密及最终的验证与清理,确保用户对整个流程有清晰理解。两种方式均以OSS为核心,支持数据上传、转码处理和加速分发,保障高效稳定的用户体验。
Kubernetes 体系基于 DNS 的服务发现为开发者提供了很大的便利,但其高度复杂的架构往往带来更高的稳定性风险。以 Nacos 为代表的独立服务发现系统架构简单,在 Kubernetes 中选择独立服务发现系统可以帮助增强业务可靠性、可伸缩性、性能及可维护性,对于规模大、增长快、稳定性要求高的业务来说是一个较理想的服务发现方案。希望大家都能找到适合自己业务的服务发现系统。
本文介绍了使用阿里云实时数仓 Hologres、函数计算 FC 和通义大模型 Qwen3 构建企业级数据分析 Agent 的方法。通过 MCP(模型上下文协议)标准化接口,解决大模型与外部工具和数据源集成的难题。Hologres 提供高性能数据分析能力,支持实时数据接入和湖仓一体分析;函数计算 FC 提供弹性、安全的 Serverless 运行环境;Qwen3 具备强大的多语言处理和推理能力。方案结合 ModelScope 的 MCP Playground,实现高效的服务化部署,帮助企业快速构建跨数据源、多步骤分解的数据分析 Agent,优化数据分析流程并降低成本。
本文介绍大模型可观测&安全推理审计解决方案和Demo演示,SLS 提供全面的 LLM 监控和日志记录功能。监控大模型使用情况和性能,自定义仪表盘;SLS 汇总 Actiontrail 事件、云产品可观测日志、LLM 网关明细日志、详细对话明细日志、Prompt Trace 和推理实时调用明细等数据,建设完整统一的大模型可观测方案,为用户的大模型安全推理审计提供全面合规支持。
修复一个Bug的成本在不同阶段有着天壤之别,发现问题越早,修复代价便越低。本文讲述了阿里云块存储在真实业务场景中的测试左移实践。
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
AI技术迎来了“百花齐放”的春天,这既是我们的挑战也是机会。而AI+千行百业创造了无限可能,也为独立开发者提供了大量的资源、支持以及学习经验的机会。本文分享一篇摘录自Hexmos 期刊的AI 时代的 GPU 生存工具包。