随着大模型能力越来越强大,利用大语言模型进行智能答疑已经成为了一个非常普遍和常见的场景。然而,各个产品或业务方要能够准确有效地进行答疑,仅依靠大模型的通用能力是远远不够的,这时候利用私有领域FAQ文档进行大模型的检索增强生成往往可以有效解决上述问题。
本文将以Yuan2.0最新发布的Februa模型为例进行测试验证,用更小规模的模型达到更好的效果。
本文详细介绍了阿里云资源编排服务(ROS)提供的Terraform托管服务,对比了ROS与Terraform的原生能力,帮助用户根据需求选择合适的IaC工具。
本文介绍了如何使用通义万相AIGC技术和阿里云的计算和存储产品来搭建自己的AI绘画服务。首先,通过创建基础云产品资源和部署AI绘画服务的步骤来开始搭建服务。然后,介绍了模板的原理和内容,以及ROS编排引擎的作用。接下来,详细介绍了AI绘画服务的一键部署过程,包括定义参数、模板的编写和ROS的使用。最后,提到了应用运行环境的搭建和自定义应用页面的方法。通过ROS的自动化部署,用户可以方便快捷地拥有自己的AI绘画服务。
阿里云通义灵码团队与重庆大学合作的研究论文被 FSE Industry 2024 (CCF A) 录用,该论文通过对阿里云开发的智能编码插件进行实证调查,主要探讨了在智能编码助手中的代码搜索问题,点击本文查看论文详解。