XTuner和魔搭社区(SWIFT)合作引入了一项长序列文本训练技术,该技术能够在多GPU环境中将长序列文本数据分割并分配给不同GPU,从而减少每个GPU上的显存占用。通过这种方式,训练超大规模模型时可以处理更长的序列,提高训练效率。魔搭社区的SWIFT框架已经集成了这一技术,支持多种大模型和数据集的训练。此外,SWIFT还提供了一个用户友好的界面,方便用户进行训练和部署,并且支持评估功能。
本文首先讲述了什么是单元测试、单元测试的价值、一个好的单元测试所具备的原则,进而引入如何去编写一个好的单元测试,通义灵码是如何快速生成单元测试的。
Hey,小伙伴!你是不是总是下定了学习编程的决心,但又因为枯燥、困难打起了退堂鼓?今天让我们跟着通义灵码边玩边练,只需要简单的几句话,就可以打造一款经典的数字华容道小游戏,即使没有代码基础也能快速上手,也许在这个过程中,你不经意间就掌握了一些编程知识。让我们开始吧!
本文档旨在详细阐述当前主流的大模型技术架构如Transformer架构。我们将从技术概述、架构介绍到具体模型实现等多个角度进行讲解。通过本文档,我们期望为读者提供一个全面的理解,帮助大家掌握大模型的工作原理,增强与客户沟通的技术基础。本文档适合对大模型感兴趣的人员阅读。
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
本文作者基于自身在RAG技术领域长达半年的实践经验,分享了从初识RAG的潜力到面对实际应用挑战的心路历程,以及如何通过一系列优化措施逐步解决这些挑战的过程。
接下来,人与智能体的交互将变得更为紧密,比如 N 年以后是否可以逐渐过渡。这个逐渐过渡的过程实际上是温和的,从依赖人类到依赖超大规模算力的转变,可能会取代我们的一些职责。这不仅仅是简单的叠加关系。对于AI和超大规模算力,这是否意味着我们可以大幅度提升软件质量,是否可以缩短研发周期并提高效率,还有创造出更优质的软件并持续发展,这无疑是肯定的。
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。