Ray是一个开源分布式计算框架,专为支持可扩展的人工智能(AI)和Python应用程序而设计。它通过提供简单直观的API简化分布式计算,使得开发者能够高效编写并行和分布式应用程序 。Ray广泛应用于深度学习训练、大规模推理服务、强化学习以及AI数据处理等场景,并构建了丰富而成熟的技术生态。
通过一系列优化,我们将 Paimon x Spark 在 TpcDS 上的性能提高了37+%,已基本和 Parquet x Spark 持平,本文对其中的关键优化点进行了详细介绍。
本文侧重于能力总结和实操搭建部分,从大模型应用的多个原子能力实现出发,到最终串联搭建一个RAG+Agent架构的大模型应用。
本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。
本文章基于业务实践,总结有关客服质检场景的解决方案和处理经验,为相似场景提供可行的借鉴方法。
推理性能的提升涉及底层硬件、模型层,以及其他各个软件中间件层的相互协同,因此了解大模型技术架构的全局视角,有助于我们对推理性能的优化方案进行评估和选型。
阿里云PAI推出PAIFuser框架,专为视频生成模型设计,通过模型并行、量化优化、稀疏运算等技术,显著提升DiT架构的训练与推理效率。实测显示,推理耗时最高降低82.96%,训练时间减少28.13%,助力高效低成本AI视频生成。