官方博客-第24页-阿里云开发者社区

  • 437

    大模型终于能“听懂”云操作了?

    本文通过 MCP Server 和大模型的结合,实现云产品管理的自然语言操作,极大提升开发者的操作效率和用户体验。

    437
  • Dify 开发者必看:如何破解 MCP 集成与 Prompt 迭代难题?

    Dify 是面向 AI 时代的开源大语言模型应用开发平台,GitHub Star 数超 10 万,为 LLMOps 领域增长最快项目之一。然而其在 MCP 协议集成、Prompt 敏捷调整及运维配置管理上存在短板。Nacos 3.0 作为阿里巴巴开源的注册配置中心,升级支持 MCP 动态管理、Prompt 实时变更与 Dify 环境变量托管,显著提升 Dify 应用的灵活性与运维效率。通过 Nacos,Dify 可动态发现 MCP 服务、按需路由调用,实现 Prompt 无感更新和配置白屏化运维,大幅降低 AI 应用开发门槛与复杂度。

  • Post-Training on PAI (3):PAI-ChatLearn,PAI 自研高性能强化学习框架

    人工智能平台 PAI 推出了高性能一体化强化学习框架 PAI-Chatlearn,从框架层面解决强化学习在计算性能和易用性方面的挑战。

  • 2024-05-15
    818

    使用智能媒体生产ICE剪辑OSS视频文件

    本篇介绍智能媒体生产ICE一些常见场景,如裁剪、拼接、字幕、ASR等,通过一些时间线示例,介绍如何快速剪辑OSS上的视频文件。

    818
  • 2024-05-15
    650

    短视频批量制作-常用功能

    越来越多的产品选择使用短视频作为内容承载,通过对媒体素材进行简单的剪辑,即可进行使用和投放,本文基于智能媒体服务IMS,介绍短视频剪辑中的常用功能,通过对不同功能的组合,方便客户组装自己的剪辑场景,进行短视频批量合成。

    650
  • 2024-05-15
    740

    图像检索解决方案

    针对图像检索业务场景,PAI提供了端到端的相似图像匹配和图像检索解决方案。本文介绍如何基于未标注的数据构建图像自监督模型,助力您快速搭建相似图像匹配和图像检索业务系统,进而实现以图搜图。

    740
  • 【深度】企业 AI 落地实践(四):如何构建端到端的 AI 应用观测体系

    本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。

  • 1
    ...
    21
    22
    23
    24
    25
    到第
    24/25