提起CDN,大家想到的字眼可能是缓存、转发、调度,用来提升终端用户体验、保护源站IP、降低源站流量风险,同时可以将源站的应用功能卸载到边缘,进一步释放边缘算力满足业务需求。DCDN脱胎于CDN,面向动态元素,通过智能路由、协议优化、压缩传输等手段,将转发场景的性能提到极限,广泛应用于电商、游戏、政企等行业。在互联网蓬勃发展,传统企业寻求数字化转型机会的今天,DCDN作为流量的入口,搭配灵活易扩展的“高级条件”及“EdgeScript”,可以通过流量转发这一技术手段,实现客户上云的“安全灰度”。
人工智能平台 PAI 推出了高性能一体化强化学习框架 PAI-Chatlearn,从框架层面解决强化学习在计算性能和易用性方面的挑战。
本文探讨了 Manus 智能体的设计及其与传统智能体的差异,重点分析了 CodeAct 机制对智能体执行效率的提升。作者通过《基于LLM的数据仓库》实验反思了交互接口选择的重要性,并提出操作系统和文件系统作为良好的自反馈交互系统。文章进一步结合 GitOps 和持续集成(CICD)理念,设计了一种低成本、可观测性强的智能体运行方案,包括计划智能体(Planner)和执行智能体(Executor)的协作流程。通过实际案例对比,展示了 GitOps 智能体与 Manus 的相似效果,并总结了其在记忆增强、推理可观测性、低成本部署及跨环境适配等方面的优势。最后提供了相关代码路径和参考材料。
企业分支通过SAG接入阿里云SDWAN网络,企业本地员工能够通过阿里云SDWAN应用加速线路实现加速访问SaaS服务,目前方案只支持office365、salesforce、ZOOM,后续会考虑加速逐步增加其他三方应用。
针对图像检索业务场景,PAI提供了端到端的相似图像匹配和图像检索解决方案。本文介绍如何基于未标注的数据构建图像自监督模型,助力您快速搭建相似图像匹配和图像检索业务系统,进而实现以图搜图。
本文探讨了AI应用在实际落地过程中面临的三大核心问题:如何高效使用AI模型、控制成本以及保障输出质量。文章详细分析了AI应用的典型架构,并提出通过全栈可观测体系实现从用户端到模型推理层的端到端监控与诊断。结合阿里云的实践经验,介绍了基于OpenTelemetry的Trace全链路追踪、关键性能指标(如TTFT、TPOT)采集、模型质量评估与MCP工具调用观测等技术手段,帮助企业在生产环境中实现AI应用的稳定、高效运行。同时,针对Dify等低代码平台的应用部署与优化提供了具体建议,助力企业构建可扩展、可观测的AI应用体系。